10 results (0.015 seconds)

CVSS: 7.5EPSS: 12%CPEs: 59EXPL: 2

15 Apr 2023 — The IEEE 802.11 specifications through 802.11ax allow physically proximate attackers to intercept (possibly cleartext) target-destined frames by spoofing a target's MAC address, sending Power Save frames to the access point, and then sending other frames to the access point (such as authentication frames or re-association frames) to remove the target's original security context. This behavior occurs because the specifications do not require an access point to purge its transmit queue before removing a clien... • https://github.com/toffeenutt/CVE-2022-47522-exploit • CWE-290: Authentication Bypass by Spoofing •

CVSS: 4.7EPSS: 0%CPEs: 2EXPL: 0

27 Sep 2022 — Layer 2 network filtering capabilities such as IPv6 RA guard can be bypassed using LLC/SNAP headers with invalid length and Ethernet to Wifi frame conversion (and optionally VLAN0 headers). Las capacidades de filtrado de red de capa 2, como la protección RA de IPv6, pueden omitirse usando encabezados LLC/SNAP con una longitud no válida y la conversión de tramas de Ethernet a Wifi (y, opcionalmente, encabezados VLAN0) • https://blog.champtar.fr/VLAN0_LLC_SNAP • CWE-130: Improper Handling of Length Parameter Inconsistency CWE-290: Authentication Bypass by Spoofing •

CVSS: 4.7EPSS: 0%CPEs: 2EXPL: 0

27 Sep 2022 — Layer 2 network filtering capabilities such as IPv6 RA guard can be bypassed using LLC/SNAP headers with invalid length (and optionally VLAN0 headers) Las capacidades de filtrado de red de capa 2, como la protección RA de IPv6, pueden omitirse usando encabezados LLC/SNAP con una longitud no válida (y, opcionalmente, encabezados VLAN0) • https://blog.champtar.fr/VLAN0_LLC_SNAP • CWE-130: Improper Handling of Length Parameter Inconsistency CWE-290: Authentication Bypass by Spoofing •

CVSS: 4.7EPSS: 0%CPEs: 2EXPL: 0

27 Sep 2022 — Layer 2 network filtering capabilities such as IPv6 RA guard can be bypassed using combinations of VLAN 0 headers, LLC/SNAP headers, and converting frames from Ethernet to Wifi and its reverse. Las capacidades de filtrado de red de capa 2, como la protección RA de IPv6, pueden omitirse usando combinaciones de encabezados VLAN 0, encabezados LLC/SNAP y convirtiendo tramas de Ethernet a Wifi y su inversa • https://blog.champtar.fr/VLAN0_LLC_SNAP • CWE-290: Authentication Bypass by Spoofing •

CVSS: 4.7EPSS: 0%CPEs: 312EXPL: 1

27 Sep 2022 — Layer 2 network filtering capabilities such as IPv6 RA guard or ARP inspection can be bypassed using combinations of VLAN 0 headers and LLC/SNAP headers. Las capacidades de filtrado de la red de capa 2, como la protección IPv6 RA o la inspección ARP, pueden omitirse usando combinaciones de encabezados VLAN 0 y encabezados LLC/SNAP • https://blog.champtar.fr/VLAN0_LLC_SNAP • CWE-290: Authentication Bypass by Spoofing •

CVSS: 3.1EPSS: 0%CPEs: 338EXPL: 1

11 May 2021 — The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that all fragments of a frame are encrypted under the same key. An adversary can abuse this to decrypt selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP encryption key is periodically renewed. El estándar 802.11 que sustenta a Wi-Fi Protected Access (WPA, WPA2, y WPA3) y Wired Equivalent Privacy (WEP) no requiere que todos los fragmentos d... • http://www.openwall.com/lists/oss-security/2021/05/11/12 • CWE-327: Use of a Broken or Risky Cryptographic Algorithm CWE-345: Insufficient Verification of Data Authenticity •

CVSS: 4.3EPSS: 0%CPEs: 385EXPL: 1

11 May 2021 — The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that the A-MSDU flag in the plaintext QoS header field is authenticated. Against devices that support receiving non-SSP A-MSDU frames (which is mandatory as part of 802.11n), an adversary can abuse this to inject arbitrary network packets. El estándar 802.11 que sustenta a Wi-Fi Protected Access (WPA, WPA2, y WPA3) y Wired Equivalent Privacy (WEP) no requiere que el flag A-MSDU ... • http://www.openwall.com/lists/oss-security/2021/05/11/12 • CWE-20: Improper Input Validation CWE-327: Use of a Broken or Risky Cryptographic Algorithm •

CVSS: 4.3EPSS: 0%CPEs: 50EXPL: 1

11 May 2021 — The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that received fragments be cleared from memory after (re)connecting to a network. Under the right circumstances, when another device sends fragmented frames encrypted using WEP, CCMP, or GCMP, this can be abused to inject arbitrary network packets and/or exfiltrate user data. El estándar 802.11 que sustenta a Wi-Fi Protected Access (WPA, WPA2, y WPA3) y Wired Equivalent Privacy ... • http://www.openwall.com/lists/oss-security/2021/05/11/12 • CWE-212: Improper Removal of Sensitive Information Before Storage or Transfer •

CVSS: 7.2EPSS: 0%CPEs: 1EXPL: 0

16 Nov 2004 — A design error in the IEEE1394 specification allows attackers with physical access to a device to read and write to sensitive memory using a modified FireWire/IEEE 1394 client, thus bypassing intended restrictions that would normally require greater degrees of physical access to exploit. NOTE: this was reported in 2008 to affect Windows Vista, but some Linux-based operating systems have protection mechanisms against this attack. • http://it.slashdot.org/article.pl?sid=08/03/04/1258210 •

CVSS: 7.5EPSS: 4%CPEs: 1EXPL: 0

20 May 2004 — The Clear Channel Assessment (CCA) algorithm in the IEEE 802.11 wireless protocol, when using DSSS transmission encoding, allows remote attackers to cause a denial of service via a certain RF signal that causes a channel to appear busy (aka "jabber"), which prevents devices from transmitting data. El algoritmo de identificicación de canal vacio (Clear Channel Assessment - CCA) en el protocolo inalámbrico IEEE 802.11, cuando usa codificación de trasmisión de codificación DSSS, permite a atacantes remotos cau... • http://archives.neohapsis.com/archives/fulldisclosure/2004-05/0631.html •