93 results (0.012 seconds)

CVSS: 5.3EPSS: 0%CPEs: 22EXPL: 0

AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised implementation will not encrypt the entirety of the data under some circumstances. This could reveal sixteen bytes of data that was preexisting in the memory that wasn't written. In the special case of "in place" encryption, sixteen bytes of the plaintext would be revealed. Since OpenSSL does not support OCB based cipher suites for TLS and DTLS, they are both unaffected. Fixed in OpenSSL 3.0.5 (Affected 3.0.0-3.0.4). • https://cert-portal.siemens.com/productcert/pdf/ssa-332410.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=919925673d6c9cfed3c1085497f5dfbbed5fc431 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=a98f339ddd7e8f487d6e0088d4a9a42324885a93 https://lists.debian.org/debian-lts-announce/2023/02/msg00019.html https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/R6CK57NBQFTPUMXAPJURCGXUYT76NQAK https://lists.fedoraproject.org/archives/list/package-announce%40lists.fe • CWE-325: Missing Cryptographic Step CWE-327: Use of a Broken or Risky Cryptographic Algorithm •

CVSS: 10.0EPSS: 12%CPEs: 50EXPL: 0

In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. • https://cert-portal.siemens.com/productcert/pdf/ssa-332410.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=2c9c35870601b4a44d86ddbf512b38df38285cfa https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=7a9c027159fe9e1bbc2cd38a8a2914bff0d5abd9 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=9639817dac8bbbaa64d09efad7464ccc405527c7 https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/6WZZBKUHQFGSKGNXXKICSRPL7AMVW5M5 https://lists.fedoraproject.org/archives/list • CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') •

CVSS: 5.9EPSS: 0%CPEs: 35EXPL: 0

There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. • https://cert-portal.siemens.com/productcert/pdf/ssa-637483.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=3bf7b73ea7123045b8f972badc67ed6878e6c37f https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=6fc1aaaf303185aa5e483e06bdfae16daa9193a7 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=e9e726506cd2a3fd9c0f12daf8cc1fe934c7dddb https://security.gentoo.org/glsa/202210-02 https://security.netapp.com/advisory/ntap-20240621-0006 https://www.debian.org/security/2022/dsa-5103 •

CVSS: 7.5EPSS: 0%CPEs: 28EXPL: 0

Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. • https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=758754966791c537ea95241438454aa86f91f256 https://security.netapp.com/advisory/ntap-20211229-0003 https://www.openssl.org/news/secadv/20211214.txt • CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') •

CVSS: 5.9EPSS: 0%CPEs: 205EXPL: 0

An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. • http://www.openwall.com/lists/oss-security/2021/03/27/1 http://www.openwall.com/lists/oss-security/2021/03/27/2 http://www.openwall.com/lists/oss-security/2021/03/28/3 http://www.openwall.com/lists/oss-security/2021/03/28/4 https://cert-portal.siemens.com/productcert/pdf/ssa-389290.pdf https://cert-portal.siemens.com/productcert/pdf/ssa-772220.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=fb9fa6b51defd48157eeb207f52181f735d96148 https://kb.pulse • CWE-476: NULL Pointer Dereference •