51 results (0.014 seconds)

CVSS: 4.1EPSS: 0%CPEs: 1EXPL: 0

The side-channel protected T-Table implementation in wolfSSL up to version 5.6.5 protects against a side-channel attacker with cache-line resolution. In a controlled environment such as Intel SGX, an attacker can gain a per instruction sub-cache-line resolution allowing them to break the cache-line-level protection. For details on the attack refer to: https://doi.org/10.46586/tches.v2024.i1.457-500 • https://github.com/wolfSSL/wolfssl/blob/master/ChangeLog.md#wolfssl-release-566-dec-19-2023 • CWE-208: Observable Timing Discrepancy •

CVSS: 4.1EPSS: 0%CPEs: 1EXPL: 0

Generating the ECDSA nonce k samples a random number r and then truncates this randomness with a modular reduction mod n where n is the order of the elliptic curve. Meaning k = r mod n. The division used during the reduction estimates a factor q_e by dividing the upper two digits (a digit having e.g. a size of 8 byte) of r by the upper digit of n and then decrements q_e in a loop until it has the correct size. Observing the number of times q_e is decremented through a control-flow revealing side-channel reveals a bias in the most significant bits of k. Depending on the curve this is either a negligible bias or a significant bias large enough to reconstruct k with lattice reduction methods. For SECP160R1, e.g., we find a bias of 15 bits. • https://github.com/wolfSSL/wolfssl/releases/tag/v5.7.2-stable • CWE-203: Observable Discrepancy •

CVSS: 5.1EPSS: 0%CPEs: 1EXPL: 0

A malicious TLS1.2 server can force a TLS1.3 client with downgrade capability to use a ciphersuite that it did not agree to and achieve a successful connection. This is because, aside from the extensions, the client was skipping fully parsing the server hello. https://doi.org/10.46586/tches.v2024.i1.457-500 • https://github.com/wolfSSL/wolfssl/blob/master/ChangeLog.md#add_later • CWE-284: Improper Access Control •

CVSS: 5.1EPSS: 0%CPEs: 1EXPL: 0

An issue was discovered in wolfSSL before 5.7.0. A safe-error attack via Rowhammer, namely FAULT+PROBE, leads to ECDSA key disclosure. When WOLFSSL_CHECK_SIG_FAULTS is used in signing operations with private ECC keys, such as in server-side TLS connections, the connection is halted if any fault occurs. The success rate in a certain amount of connection requests can be processed via an advanced technique for ECDSA key recovery. • https://github.com/wolfSSL/wolfssl/releases/tag/v5.7.2-stable • CWE-922: Insecure Storage of Sensitive Information •

CVSS: 10.0EPSS: 0%CPEs: 1EXPL: 0

In function MatchDomainName(), input param str is treated as a NULL terminated string despite being user provided and unchecked. Specifically, the function X509_check_host() takes in a pointer and length to check against, with no requirements that it be NULL terminated. If a caller was attempting to do a name check on a non-NULL terminated buffer, the code would read beyond the bounds of the input array until it found a NULL terminator.This issue affects wolfSSL: through 5.7.0. • https://https://github.com/wolfSSL/wolfssl/pull/7604 • CWE-125: Out-of-bounds Read •