// For flags

CVE-2021-37652

Use after free in boosted trees creation in TensorFlow

Severity Score

7.8
*CVSS v3.1

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. En las versiones afectadas, la implementación "tf.raw_ops.BoostedTreesCreateEnsemble" puede dar lugar a un error de uso de memoria previamente liberada si un atacante suministra argumentos especialmente diseñados. La [implementación](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) usa un recurso contado por referencias y decrementa el refcount si ocurre un fallo en la inicialización, como debería. Sin embargo, cuando se escribió el código, el recurso se representaba como un puntero desnudo, pero la refactorización posterior lo ha cambiado a un puntero inteligente. Así, cuando el puntero abandona el ámbito, se produce una "liberación" posterior del recurso, pero ésta no presenta en cuenta que el refcount ya ha llegado a 0, por lo que el recurso ya ha sido liberado. Durante este proceso de doble liberación, se accede a los miembros del objeto recurso para su limpieza, pero no son válidos ya que todo el recurso ha sido liberado. Hemos parcheado el problema en el commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab de GitHub. La corrección será incluida en TensorFlow versión 2.6.0. También seleccionaremos este commit en TensorFlow versión 2.5.1, TensorFlow versión 2.4.3, y TensorFlow versión 2.3.4, ya que estos también están afectados y todavía están en el rango de soporte.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
None
Confidentiality
Partial
Integrity
Partial
Availability
Partial
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2021-07-29 CVE Reserved
  • 2021-08-12 CVE Published
  • 2023-03-08 EPSS Updated
  • 2024-08-04 CVE Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
  • CWE-415: Double Free
  • CWE-416: Use After Free
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
>= 2.3.0 < 2.3.4
Search vendor "Google" for product "Tensorflow" and version " >= 2.3.0 < 2.3.4"
-
Affected
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
>= 2.4.0 < 2.4.3
Search vendor "Google" for product "Tensorflow" and version " >= 2.4.0 < 2.4.3"
-
Affected
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
2.5.0
Search vendor "Google" for product "Tensorflow" and version "2.5.0"
-
Affected
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
2.6.0
Search vendor "Google" for product "Tensorflow" and version "2.6.0"
rc0
Affected
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
2.6.0
Search vendor "Google" for product "Tensorflow" and version "2.6.0"
rc1
Affected
Google
Search vendor "Google"
Tensorflow
Search vendor "Google" for product "Tensorflow"
2.6.0
Search vendor "Google" for product "Tensorflow" and version "2.6.0"
rc2
Affected