// For flags

CVE-2022-48733

btrfs: fix use-after-free after failure to create a snapshot

Severity Score

7.8
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free after failure to create a snapshot At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the
following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore.

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free after failure to create a snapshot At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and then attach it to the transaction's list of pending snapshots. After that we call btrfs_commit_transaction(), and if that returns an error we jump to 'fail' label, where we kfree() the pending snapshot structure. This can result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the pending snapshot to the transaction's list. Instead add the pending snapshot to the transaction handle, and then at btrfs_commit_transaction() we add the snapshot to the list only when we can guarantee that any error returned after that point will result in a transaction abort, in which case the ioctl code can safely free the pending snapshot and no one can access it anymore.

Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
Single
Confidentiality
Complete
Integrity
Complete
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-06-20 CVE Reserved
  • 2024-06-20 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-29 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.10.226
Search vendor "Linux" for product "Linux Kernel" and version " < 5.10.226"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.15.22
Search vendor "Linux" for product "Linux Kernel" and version " < 5.15.22"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.16.8
Search vendor "Linux" for product "Linux Kernel" and version " < 5.16.8"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.17
Search vendor "Linux" for product "Linux Kernel" and version " < 5.17"
en
Affected