// For flags

CVE-2022-48853

swiotlb: fix info leak with DMA_FROM_DEVICE

Severity Score

5.5
*CVSS v3.1

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved:

swiotlb: fix info leak with DMA_FROM_DEVICE

The problem I'm addressing was discovered by the LTP test covering
cve-2018-1000204.

A short description of what happens follows:
1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO
interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV
and a corresponding dxferp. The peculiar thing about this is that TUR
is not reading from the device.
2) In sg_start_req() the invocation of blk_rq_map_user() effectively
bounces the user-space buffer. As if the device was to transfer into
it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in
sg_build_indirect()") we make sure this first bounce buffer is
allocated with GFP_ZERO.
3) For the rest of the story we keep ignoring that we have a TUR, so the
device won't touch the buffer we prepare as if the we had a
DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device
and the buffer allocated by SG is mapped by the function
virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here
scatter-gather and not scsi generics). This mapping involves bouncing
via the swiotlb (we need swiotlb to do virtio in protected guest like
s390 Secure Execution, or AMD SEV).
4) When the SCSI TUR is done, we first copy back the content of the second
(that is swiotlb) bounce buffer (which most likely contains some
previous IO data), to the first bounce buffer, which contains all
zeros. Then we copy back the content of the first bounce buffer to
the user-space buffer.
5) The test case detects that the buffer, which it zero-initialized,
ain't all zeros and fails.

One can argue that this is an swiotlb problem, because without swiotlb
we leak all zeros, and the swiotlb should be transparent in a sense that
it does not affect the outcome (if all other participants are well
behaved).

Copying the content of the original buffer into the swiotlb buffer is
the only way I can think of to make swiotlb transparent in such
scenarios. So let's do just that if in doubt, but allow the driver
to tell us that the whole mapped buffer is going to be overwritten,
in which case we can preserve the old behavior and avoid the performance
impact of the extra bounce.

En el kernel de Linux, se resolvió la siguiente vulnerabilidad: swiotlb: corrige la fuga de información con DMA_FROM_DEVICE El problema que estoy abordando fue descubierto mediante la prueba LTP que cubre cve-2018-1000204. A continuación se ofrece una breve descripción de lo que sucede: 1) El caso de prueba emite un código de comando 00 (UNIDAD DE PRUEBA LISTO) a través de la interfaz SG_IO con: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV y un dxferp correspondiente. Lo peculiar de esto es que TUR no lee desde el dispositivo. 2) En sg_start_req() la invocación de blk_rq_map_user() efectivamente rebota el buffer del espacio de usuario. Como si el dispositivo fuera a transferirse a él. Desde El commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in sg_build_indirect()") nos aseguramos de que este primer búfer de rebote esté asignado con GFP_ZERO. 3) Durante el resto de la historia seguimos ignorando que tenemos un TUR, por lo que el dispositivo no tocará el buffer que preparamos como si tuviéramos una situación del tipo DMA_FROM_DEVICE. Mi configuración utiliza un dispositivo virtio-scsi y el búfer asignado por SG se asigna mediante la función virtqueue_add_split() que usa DMA_FROM_DEVICE para los sgs "in" (aquí scatter-gather y no genéricos scsi). Este mapeo implica rebotar a través de swiotlb (necesitamos swiotlb para hacer virtio en un invitado protegido como s390 Secure Execution o AMD SEV). 4) Cuando finaliza el SCSI TUR, primero copiamos el contenido del segundo búfer de rebote (es decir, swiotlb) (que probablemente contiene algunos datos de IO anteriores) al primer búfer de rebote, que contiene todos ceros. Luego volvemos a copiar el contenido del primer búfer de rebote al búfer de espacio de usuario. 5) El caso de prueba detecta que el búfer, que inicializó en cero, no es todo ceros y falla. Se puede argumentar que se trata de un problema de swiotlb, porque sin swiotlb se filtran todos los ceros, y swiotlb debería ser transparente en el sentido de que no afecte el resultado (si todos los demás participantes se portan bien). Copiar el contenido del búfer original en el búfer swiotlb es la única forma que se me ocurre para hacer que swiotlb sea transparente en tales escenarios. Entonces, hagamos eso en caso de duda, pero permitamos que el controlador nos diga que se sobrescribirá todo el búfer asignado, en cuyo caso podemos preservar el comportamiento anterior y evitar el impacto en el rendimiento del rebote adicional.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
None
Availability
None
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-07-16 CVE Reserved
  • 2024-07-16 CVE Published
  • 2024-07-17 EPSS Updated
  • 2024-09-11 CVE Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 4.9.320
Search vendor "Linux" for product "Linux Kernel" and version " < 4.9.320"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 4.14.281
Search vendor "Linux" for product "Linux Kernel" and version " < 4.14.281"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 4.19.245
Search vendor "Linux" for product "Linux Kernel" and version " < 4.19.245"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.4.189
Search vendor "Linux" for product "Linux Kernel" and version " < 5.4.189"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.10.110
Search vendor "Linux" for product "Linux Kernel" and version " < 5.10.110"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.15.29
Search vendor "Linux" for product "Linux Kernel" and version " < 5.15.29"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.16.15
Search vendor "Linux" for product "Linux Kernel" and version " < 5.16.15"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.17
Search vendor "Linux" for product "Linux Kernel" and version " < 5.17"
en
Affected