// For flags

CVE-2024-39486

drm/drm_file: Fix pid refcounting race

Severity Score

"-"
*CVSS v-

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved:

drm/drm_file: Fix pid refcounting race

<maarten.lankhorst@linux.intel.com>, Maxime Ripard
<mripard@kernel.org>, Thomas Zimmermann <tzimmermann@suse.de>

filp->pid is supposed to be a refcounted pointer; however, before this
patch, drm_file_update_pid() only increments the refcount of a struct
pid after storing a pointer to it in filp->pid and dropping the
dev->filelist_mutex, making the following race possible:

process A process B
========= =========
begin drm_file_update_pid
mutex_lock(&dev->filelist_mutex)
rcu_replace_pointer(filp->pid, <pid B>, 1)
mutex_unlock(&dev->filelist_mutex)
begin drm_file_update_pid
mutex_lock(&dev->filelist_mutex)
rcu_replace_pointer(filp->pid, <pid A>, 1)
mutex_unlock(&dev->filelist_mutex)
get_pid(<pid A>)
synchronize_rcu()
put_pid(<pid B>) *** pid B reaches refcount 0 and is freed here ***
get_pid(<pid B>) *** UAF ***
synchronize_rcu()
put_pid(<pid A>)

As far as I know, this race can only occur with CONFIG_PREEMPT_RCU=y
because it requires RCU to detect a quiescent state in code that is not
explicitly calling into the scheduler.

This race leads to use-after-free of a "struct pid".
It is probably somewhat hard to hit because process A has to pass
through a synchronize_rcu() operation while process B is between
mutex_unlock() and get_pid().

Fix it by ensuring that by the time a pointer to the current task's pid
is stored in the file, an extra reference to the pid has been taken.

This fix also removes the condition for synchronize_rcu(); I think
that optimization is unnecessary complexity, since in that case we
would usually have bailed out on the lockless check above.

En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: drm/drm_file: corrige la ejecución de recuento de pid filp-&gt;pid se supone que es un puntero recontado; sin embargo, antes de este parche, drm_file_update_pid() solo incrementa el recuento de una estructura pid después de almacenar un puntero a ella en filp-&gt;pid y eliminar dev-&gt;filelist_mutex, haciendo posible la siguiente ejecución: proceso A proceso B ==== ===== ========= comenzar drm_file_update_pid mutex_lock(&amp;dev-&gt;filelist_mutex) rcu_replace_pointer(filp-&gt;pid, , 1) mutex_unlock(&amp;dev-&gt;filelist_mutex) begin drm_file_update_pid mutex_lock(&amp;dev- &gt;filelist_mutex) rcu_replace_pointer(filp-&gt;pid, , 1) mutex_unlock(&amp;dev-&gt;filelist_mutex) get_pid() synchronize_rcu() put_pid() *** pid B alcanza refcount 0 y se libera aquí *** get_pid() *** UAF *** synchronize_rcu() put_pid() Hasta donde yo sé, esta ejecución solo puede ocurrir con CONFIG_PREEMPT_RCU=y porque requiere que RCU detecte un estado inactivo en el código que no llame explícitamente al programador. Esta ejecución conduce a use after free de una "estructura pid". Probablemente sea algo difícil de lograr porque el proceso A tiene que pasar por una operación synchronize_rcu() mientras que el proceso B está entre mutex_unlock() y get_pid(). Solucionelo asegurándose de que cuando se almacene en el archivo un puntero al pid de la tarea actual, se haya tomado una referencia adicional al pid. Esta solución también elimina la condición de synchronize_rcu(); Creo que la optimización es una complejidad innecesaria, ya que en ese caso normalmente habríamos abandonado la verificación sin bloqueo anterior.

Linux DRM has drm_file_update_pid() call to get_pid() too late, which creates a race condition that can lead to use-after-free issue of a struct pid.

*Credits: N/A
CVSS Scores
Attack Vector
-
Attack Complexity
-
Privileges Required
-
User Interaction
-
Scope
-
Confidentiality
-
Integrity
-
Availability
-
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-06-25 CVE Reserved
  • 2024-07-06 CVE Published
  • 2024-08-02 CVE Updated
  • 2024-08-23 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.6.9 < 6.6.37
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.6.9 < 6.6.37"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.9.8
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.9.8"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.10
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.10"
en
Affected