// For flags

CVE-2024-40935

cachefiles: flush all requests after setting CACHEFILES_DEAD

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: cachefiles: flush all requests after setting CACHEFILES_DEAD In ondemand mode, when the daemon is processing an open request, if the
kernel flags the cache as CACHEFILES_DEAD, the cachefiles_daemon_write()
will always return -EIO, so the daemon can't pass the copen to the kernel.
Then the kernel process that is waiting for the copen triggers a hung_task. Since the DEAD state is irreversible, it can only be exited by closing
/dev/cachefiles. Therefore, after calling cachefiles_io_error() to mark
the cache as CACHEFILES_DEAD, if in ondemand mode, flush all requests to
avoid the above hungtask. We may still be able to read some of the cached
data before closing the fd of /dev/cachefiles. Note that this relies on the patch that adds reference counting to the req,
otherwise it may UAF.

In the Linux kernel, the following vulnerability has been resolved: cachefiles: flush all requests after setting CACHEFILES_DEAD In ondemand mode, when the daemon is processing an open request, if the kernel flags the cache as CACHEFILES_DEAD, the cachefiles_daemon_write() will always return -EIO, so the daemon can't pass the copen to the kernel. Then the kernel process that is waiting for the copen triggers a hung_task. Since the DEAD state is irreversible, it can only be exited by closing /dev/cachefiles. Therefore, after calling cachefiles_io_error() to mark the cache as CACHEFILES_DEAD, if in ondemand mode, flush all requests to avoid the above hungtask. We may still be able to read some of the cached data before closing the fd of /dev/cachefiles. Note that this relies on the patch that adds reference counting to the req, otherwise it may UAF.

Chenyuan Yang discovered that the CEC driver driver in the Linux kernel contained a use-after-free vulnerability. A local attacker could use this to cause a denial of service or possibly execute arbitrary code. It was discovered that the JFS file system contained an out-of-bounds read vulnerability when printing xattr debug information. A local attacker could use this to cause a denial of service.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
Single
Confidentiality
None
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-07-12 CVE Reserved
  • 2024-07-12 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-29 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.19 < 6.1.95
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.19 < 6.1.95"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.19 < 6.6.35
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.19 < 6.6.35"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.19 < 6.9.6
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.19 < 6.9.6"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.19 < 6.10
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.19 < 6.10"
en
Affected