// For flags

CVE-2024-43840

bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG When BPF_TRAMP_F_CALL_ORIG is set, the trampoline calls
__bpf_tramp_enter() and __bpf_tramp_exit() functions, passing them
the struct bpf_tramp_image *im pointer as an argument in R0. The trampoline generation code uses emit_addr_mov_i64() to emit
instructions for moving the bpf_tramp_image address into R0, but
emit_addr_mov_i64() assumes the address to be in the vmalloc() space
and uses only 48 bits. Because bpf_tramp_image is allocated using
kzalloc(), its address can use more than 48-bits, in this case the
trampoline will pass an invalid address to __bpf_tramp_enter/exit()
causing a kernel crash. Fix this by using emit_a64_mov_i64() in place of emit_addr_mov_i64()
as it can work with addresses that are greater than 48-bits.

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG When BPF_TRAMP_F_CALL_ORIG is set, the trampoline calls __bpf_tramp_enter() and __bpf_tramp_exit() functions, passing them the struct bpf_tramp_image *im pointer as an argument in R0. The trampoline generation code uses emit_addr_mov_i64() to emit instructions for moving the bpf_tramp_image address into R0, but emit_addr_mov_i64() assumes the address to be in the vmalloc() space and uses only 48 bits. Because bpf_tramp_image is allocated using kzalloc(), its address can use more than 48-bits, in this case the trampoline will pass an invalid address to __bpf_tramp_enter/exit() causing a kernel crash. Fix this by using emit_a64_mov_i64() in place of emit_addr_mov_i64() as it can work with addresses that are greater than 48-bits.

Chenyuan Yang discovered that the USB Gadget subsystem in the Linux kernel did not properly check for the device to be enabled before writing. A local attacker could possibly use this to cause a denial of service. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
Single
Confidentiality
None
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-08-17 CVE Reserved
  • 2024-08-17 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-29 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.0 < 6.10.3
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.0 < 6.10.3"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.0 < 6.11
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.0 < 6.11"
en
Affected