// For flags

CVE-2024-43882

exec: Fix ToCToU between perm check and set-uid/gid usage

Severity Score

8.4
*CVSS v3.1

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track*
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: exec: Fix ToCToU between perm check and set-uid/gid usage When opening a file for exec via do_filp_open(), permission checking is
done against the file's metadata at that moment, and on success, a file
pointer is passed back. Much later in the execve() code path, the file
metadata (specifically mode, uid, and gid) is used to determine if/how
to set the uid and gid. However, those values may have changed since the
permissions check, meaning the execution may gain unintended privileges. For example, if a file could change permissions from executable and not
set-id: ---------x 1 root root 16048 Aug 7 13:16 target to set-id and non-executable: ---S------ 1 root root 16048 Aug 7 13:16 target it is possible to gain root privileges when execution should have been
disallowed. While this race condition is rare in real-world scenarios, it has been
observed (and proven exploitable) when package managers are updating
the setuid bits of installed programs. Such files start with being
world-executable but then are adjusted to be group-exec with a set-uid
bit. For example, "chmod o-x,u+s target" makes "target" executable only
by uid "root" and gid "cdrom", while also becoming setuid-root: -rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target becomes: -rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target But racing the chmod means users without group "cdrom" membership can
get the permission to execute "target" just before the chmod, and when
the chmod finishes, the exec reaches brpm_fill_uid(), and performs the
setuid to root, violating the expressed authorization of "only cdrom
group members can setuid to root". Re-check that we still have execute permissions in case the metadata
has changed. It would be better to keep a copy from the perm-check time,
but until we can do that refactoring, the least-bad option is to do a
full inode_permission() call (under inode lock). It is understood that
this is safe against dead-locks, but hardly optimal.

In the Linux kernel, the following vulnerability has been resolved: exec: Fix ToCToU between perm check and set-uid/gid usage When opening a file for exec via do_filp_open(), permission checking is done against the file's metadata at that moment, and on success, a file pointer is passed back. Much later in the execve() code path, the file metadata (specifically mode, uid, and gid) is used to determine if/how to set the uid and gid. However, those values may have changed since the permissions check, meaning the execution may gain unintended privileges. For example, if a file could change permissions from executable and not set-id: ---------x 1 root root 16048 Aug 7 13:16 target to set-id and non-executable: ---S------ 1 root root 16048 Aug 7 13:16 target it is possible to gain root privileges when execution should have been disallowed. While this race condition is rare in real-world scenarios, it has been observed (and proven exploitable) when package managers are updating the setuid bits of installed programs. Such files start with being world-executable but then are adjusted to be group-exec with a set-uid bit. For example, "chmod o-x,u+s target" makes "target" executable only by uid "root" and gid "cdrom", while also becoming setuid-root: -rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target becomes: -rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target But racing the chmod means users without group "cdrom" membership can get the permission to execute "target" just before the chmod, and when the chmod finishes, the exec reaches brpm_fill_uid(), and performs the setuid to root, violating the expressed authorization of "only cdrom group members can setuid to root". Re-check that we still have execute permissions in case the metadata has changed. It would be better to keep a copy from the perm-check time, but until we can do that refactoring, the least-bad option is to do a full inode_permission() call (under inode lock). It is understood that this is safe against dead-locks, but hardly optimal.

It was discovered that the CIFS network file system implementation in the Linux kernel did not properly validate certain SMB messages, leading to an out-of-bounds read vulnerability. An attacker could use this to cause a denial of service or possibly expose sensitive information. Supraja Sridhara, Benedict Schlüter, Mark Kuhne, Andrin Bertschi, and Shweta Shinde discovered that the Confidential Computing framework in the Linux kernel for x86 platforms did not properly handle 32-bit emulation on TDX and SEV. An attacker with access to the VMM could use this to cause a denial of service or possibly execute arbitrary code.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
None
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
High
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
High
Authentication
Single
Confidentiality
Complete
Integrity
Complete
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track*
Exploitation
None
Automatable
No
Tech. Impact
Total
* Organization's Worst-case Scenario
Timeline
  • 2024-08-17 CVE Reserved
  • 2024-08-21 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-18 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
  • CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 4.19.320
Search vendor "Linux" for product "Linux Kernel" and version " < 4.19.320"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.4.282
Search vendor "Linux" for product "Linux Kernel" and version " < 5.4.282"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.10.224
Search vendor "Linux" for product "Linux Kernel" and version " < 5.10.224"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 5.15.165
Search vendor "Linux" for product "Linux Kernel" and version " < 5.15.165"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.1.106
Search vendor "Linux" for product "Linux Kernel" and version " < 6.1.106"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.6.47
Search vendor "Linux" for product "Linux Kernel" and version " < 6.6.47"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.10.6
Search vendor "Linux" for product "Linux Kernel" and version " < 6.10.6"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.11
Search vendor "Linux" for product "Linux Kernel" and version " < 6.11"
en
Affected