// For flags

CVE-2024-43887

net/tcp: Disable TCP-AO static key after RCU grace period

Severity Score

4.7
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last
tcp_ao_info. On the socket destruction tcp_ao_info ceases to be
with RCU grace period, while tcp-ao static branch is currently deferred
destructed. The static key definition is
: DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second
and tcp_ao_needed is in the process of disablement, other CPUs may
yet see tcp_ao_info which atent dead, but soon-to-be.
And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition:
> * The caller must make sure that the static key can't get disabled while
> * in this function. It doesn't patch jump labels, only adds a user to
> * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label:
Prevent key->enabled int overflow"), which is needed for the atomic
contexts, one of which would be the creation of a full socket from a
request socket. In that atomic context, it's known by the presence
of the key (md5/ao) that the static branch is already enabled.
So, the ref counter for that static branch is just incremented
instead of holding the proper mutex.
static_key_fast_inc_not_disabled() is just a helper for such usage
case. But it must not be used if the static branch could get disabled
in parallel as it's not protected by jump_label_mutex and as a result,
races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1
[] ------------[ cut here ]------------
[] kernel BUG at arch/x86/kernel/jump_label.c:73!
[] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1
[] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[] Workqueue: events jump_label_update_timeout
[] RIP: 0010:__jump_label_patch+0x2f6/0x350
...
[] Call Trace:
[] <TASK>
[] arch_jump_label_transform_queue+0x6c/0x110
[] __jump_label_update+0xef/0x350
[] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60
[] jump_label_update_timeout+0x2c/0x40
[] process_one_work+0xe3b/0x1670
[] worker_thread+0x587/0xce0
[] kthread+0x28a/0x350
[] ret_from_fork+0x31/0x70
[] ret_from_fork_asm+0x1a/0x30
[] </TASK>
[] Modules linked in: veth
[] ---[ end trace 0000000000000000 ]---
[] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr

In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last tcp_ao_info. On the socket destruction tcp_ao_info ceases to be with RCU grace period, while tcp-ao static branch is currently deferred destructed. The static key definition is : DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second and tcp_ao_needed is in the process of disablement, other CPUs may yet see tcp_ao_info which atent dead, but soon-to-be. And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition: > * The caller must make sure that the static key can't get disabled while > * in this function. It doesn't patch jump labels, only adds a user to > * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label: Prevent key->enabled int overflow"), which is needed for the atomic contexts, one of which would be the creation of a full socket from a request socket. In that atomic context, it's known by the presence of the key (md5/ao) that the static branch is already enabled. So, the ref counter for that static branch is just incremented instead of holding the proper mutex. static_key_fast_inc_not_disabled() is just a helper for such usage case. But it must not be used if the static branch could get disabled in parallel as it's not protected by jump_label_mutex and as a result, races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1 [] ------------[ cut here ]------------ [] kernel BUG at arch/x86/kernel/jump_label.c:73! [] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI [] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1 [] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [] Workqueue: events jump_label_update_timeout [] RIP: 0010:__jump_label_patch+0x2f6/0x350 ... [] Call Trace: [] <TASK> [] arch_jump_label_transform_queue+0x6c/0x110 [] __jump_label_update+0xef/0x350 [] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60 [] jump_label_update_timeout+0x2c/0x40 [] process_one_work+0xe3b/0x1670 [] worker_thread+0x587/0xce0 [] kthread+0x28a/0x350 [] ret_from_fork+0x31/0x70 [] ret_from_fork_asm+0x1a/0x30 [] </TASK> [] Modules linked in: veth [] ---[ end trace 0000000000000000 ]--- [] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr

Chenyuan Yang discovered that the USB Gadget subsystem in the Linux kernel did not properly check for the device to be enabled before writing. A local attacker could possibly use this to cause a denial of service. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
High
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
High
Authentication
Single
Confidentiality
None
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-08-17 CVE Reserved
  • 2024-08-26 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-22 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.10.5
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.10.5"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.11
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.11"
en
Affected