CVE-2024-43887
net/tcp: Disable TCP-AO static key after RCU grace period
Severity Score
Exploit Likelihood
Affected Versions
Public Exploits
0Exploited in Wild
-Decision
Descriptions
In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last
tcp_ao_info. On the socket destruction tcp_ao_info ceases to be
with RCU grace period, while tcp-ao static branch is currently deferred
destructed. The static key definition is
: DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second
and tcp_ao_needed is in the process of disablement, other CPUs may
yet see tcp_ao_info which atent dead, but soon-to-be.
And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition:
> * The caller must make sure that the static key can't get disabled while
> * in this function. It doesn't patch jump labels, only adds a user to
> * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label:
Prevent key->enabled int overflow"), which is needed for the atomic
contexts, one of which would be the creation of a full socket from a
request socket. In that atomic context, it's known by the presence
of the key (md5/ao) that the static branch is already enabled.
So, the ref counter for that static branch is just incremented
instead of holding the proper mutex.
static_key_fast_inc_not_disabled() is just a helper for such usage
case. But it must not be used if the static branch could get disabled
in parallel as it's not protected by jump_label_mutex and as a result,
races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1
[] ------------[ cut here ]------------
[] kernel BUG at arch/x86/kernel/jump_label.c:73!
[] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1
[] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[] Workqueue: events jump_label_update_timeout
[] RIP: 0010:__jump_label_patch+0x2f6/0x350
...
[] Call Trace:
[] <TASK>
[] arch_jump_label_transform_queue+0x6c/0x110
[] __jump_label_update+0xef/0x350
[] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60
[] jump_label_update_timeout+0x2c/0x40
[] process_one_work+0xe3b/0x1670
[] worker_thread+0x587/0xce0
[] kthread+0x28a/0x350
[] ret_from_fork+0x31/0x70
[] ret_from_fork_asm+0x1a/0x30
[] </TASK>
[] Modules linked in: veth
[] ---[ end trace 0000000000000000 ]---
[] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr
In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last tcp_ao_info. On the socket destruction tcp_ao_info ceases to be with RCU grace period, while tcp-ao static branch is currently deferred destructed. The static key definition is : DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second and tcp_ao_needed is in the process of disablement, other CPUs may yet see tcp_ao_info which atent dead, but soon-to-be. And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition: > * The caller must make sure that the static key can't get disabled while > * in this function. It doesn't patch jump labels, only adds a user to > * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label: Prevent key->enabled int overflow"), which is needed for the atomic contexts, one of which would be the creation of a full socket from a request socket. In that atomic context, it's known by the presence of the key (md5/ao) that the static branch is already enabled. So, the ref counter for that static branch is just incremented instead of holding the proper mutex. static_key_fast_inc_not_disabled() is just a helper for such usage case. But it must not be used if the static branch could get disabled in parallel as it's not protected by jump_label_mutex and as a result, races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1 [] ------------[ cut here ]------------ [] kernel BUG at arch/x86/kernel/jump_label.c:73! [] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI [] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1 [] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [] Workqueue: events jump_label_update_timeout [] RIP: 0010:__jump_label_patch+0x2f6/0x350 ... [] Call Trace: [] <TASK> [] arch_jump_label_transform_queue+0x6c/0x110 [] __jump_label_update+0xef/0x350 [] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60 [] jump_label_update_timeout+0x2c/0x40 [] process_one_work+0xe3b/0x1670 [] worker_thread+0x587/0xce0 [] kthread+0x28a/0x350 [] ret_from_fork+0x31/0x70 [] ret_from_fork_asm+0x1a/0x30 [] </TASK> [] Modules linked in: veth [] ---[ end trace 0000000000000000 ]--- [] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr
Chenyuan Yang discovered that the USB Gadget subsystem in the Linux kernel did not properly check for the device to be enabled before writing. A local attacker could possibly use this to cause a denial of service. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.
CVSS Scores
SSVC
- Decision:Track
Timeline
- 2024-08-17 CVE Reserved
- 2024-08-26 CVE Published
- 2024-12-19 CVE Updated
- 2025-03-22 EPSS Updated
- ---------- Exploited in Wild
- ---------- KEV Due Date
- ---------- First Exploit
CWE
CAPEC
References (3)
URL | Tag | Source |
---|---|---|
https://git.kernel.org/stable/c/67fa83f7c86a86913ab9cd5a13b4bebd8d2ebb43 | Vuln. Introduced |
URL | Date | SRC |
---|
URL | Date | SRC |
---|---|---|
https://git.kernel.org/stable/c/954d55a59b2501f4a9bd693b40ce45a1c46cb2b3 | 2024-08-14 | |
https://git.kernel.org/stable/c/14ab4792ee120c022f276a7e4768f4dcb08f0cdd | 2024-08-04 |
URL | Date | SRC |
---|
Affected Vendors, Products, and Versions
Vendor | Product | Version | Other | Status | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vendor | Product | Version | Other | Status | <-- --> | Vendor | Product | Version | Other | Status |
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 6.7 < 6.10.5 Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.10.5" | en |
Affected
| ||||||
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 6.7 < 6.11 Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.11" | en |
Affected
|