// For flags

CVE-2024-50019

kthread: unpark only parked kthread

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: kthread: unpark only parked kthread Calling into kthread unparking unconditionally is mostly harmless when
the kthread is already unparked. The wake up is then simply ignored
because the target is not in TASK_PARKED state. However if the kthread is per CPU, the wake up is preceded by a call
to kthread_bind() which expects the task to be inactive and in
TASK_PARKED state, which obviously isn't the case if it is unparked. As a result, calling kthread_stop() on an unparked per-cpu kthread
triggers such a warning: WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525 <TASK> kthread_stop+0x17a/0x630 kernel/kthread.c:707 destroy_workqueue+0x136/0xc40 kernel/workqueue.c:5810 wg_destruct+0x1e2/0x2e0 drivers/net/wireguard/device.c:257 netdev_run_todo+0xe1a/0x1000 net/core/dev.c:10693 default_device_exit_batch+0xa14/0xa90 net/core/dev.c:11769 ops_exit_list net/core/net_namespace.c:178 [inline] cleanup_net+0x89d/0xcc0 net/core/net_namespace.c:640 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd70 kernel/workqueue.c:3393 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Fix this with skipping unecessary unparking while stopping a kthread.

In the Linux kernel, the following vulnerability has been resolved: kthread: unpark only parked kthread Calling into kthread unparking unconditionally is mostly harmless when the kthread is already unparked. The wake up is then simply ignored because the target is not in TASK_PARKED state. However if the kthread is per CPU, the wake up is preceded by a call to kthread_bind() which expects the task to be inactive and in TASK_PARKED state, which obviously isn't the case if it is unparked. As a result, calling kthread_stop() on an unparked per-cpu kthread triggers such a warning: WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525 <TASK> kthread_stop+0x17a/0x630 kernel/kthread.c:707 destroy_workqueue+0x136/0xc40 kernel/workqueue.c:5810 wg_destruct+0x1e2/0x2e0 drivers/net/wireguard/device.c:257 netdev_run_todo+0xe1a/0x1000 net/core/dev.c:10693 default_device_exit_batch+0xa14/0xa90 net/core/dev.c:11769 ops_exit_list net/core/net_namespace.c:178 [inline] cleanup_net+0x89d/0xcc0 net/core/net_namespace.c:640 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd70 kernel/workqueue.c:3393 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Fix this with skipping unecessary unparking while stopping a kthread.

Michael Randrianantenaina discovered that the Bluetooth driver in the Linux Kernel contained an improper access control vulnerability. A nearby attacker could use this to connect a rougue device and possibly execute arbitrary code. Attila Szász discovered that the HFS+ file system implementation in the Linux Kernel contained a heap overflow vulnerability. An attacker could use a specially crafted file system image that, when mounted, could cause a denial of service or possibly execute arbitrary code.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
Single
Confidentiality
None
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-10-21 CVE Reserved
  • 2024-10-21 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-31 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.11 < 5.15.168
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.11 < 5.15.168"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.11 < 6.1.113
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.11 < 6.1.113"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.11 < 6.6.57
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.11 < 6.6.57"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.11 < 6.11.4
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.11 < 6.11.4"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.11 < 6.12
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.11 < 6.12"
en
Affected