// For flags

CVE-2024-50063

bpf: Prevent tail call between progs attached to different hooks

Severity Score

7.8
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

Track
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions
can take different parameters or return different return values. If
prog attached to one kernel function tail calls prog attached to another
kernel function, the ctx access or return value verification could be
bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter
and prog2 is attached to func2 which takes two parameters. Since verifier
assumes the bpf ctx passed to prog2 is constructed based on func2's
prototype, verifier allows prog2 to access the second parameter from
the bpf ctx passed to it. The problem is that verifier does not prevent
prog1 from passing its bpf ctx to prog2 via tail call. In this case,
the bpf ctx passed to prog2 is constructed from func1 instead of func2,
that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security,
and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier
knows the return value rules for these two hooks, e.g. it is legal for
bpf_lsm_audit_rule_known to return positive number 1, and it is illegal
for file_alloc_security to return positive number. So verifier allows
prog2 to return positive number 1, but does not allow prog1 to return
positive number. The problem is that verifier does not prevent prog1
from calling prog2 via tail call. In this case, prog2's return value 1
will be used as the return value for prog1's hook file_alloc_security.
That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.

In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.

Michael Randrianantenaina discovered that the Bluetooth driver in the Linux Kernel contained an improper access control vulnerability. A nearby attacker could use this to connect a rougue device and possibly execute arbitrary code. Attila Szász discovered that the HFS+ file system implementation in the Linux Kernel contained a heap overflow vulnerability. An attacker could use a specially crafted file system image that, when mounted, could cause a denial of service or possibly execute arbitrary code.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
Single
Confidentiality
Complete
Integrity
Complete
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:Track
Exploitation
None
Automatable
No
Tech. Impact
Partial
* Organization's Worst-case Scenario
Timeline
  • 2024-10-21 CVE Reserved
  • 2024-10-21 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-28 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.5 < 6.6.57
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.5 < 6.6.57"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.5 < 6.11.4
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.5 < 6.11.4"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 5.5 < 6.12
Search vendor "Linux" for product "Linux Kernel" and version " >= 5.5 < 6.12"
en
Affected