// For flags

CVE-2024-50203

bpf, arm64: Fix address emission with tag-based KASAN enabled

Severity Score

7.8
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image
struct on the stack is passed during the size calculation pass and
an address on the heap is passed during code generation. This may
cause a heap buffer overflow if the heap address is tagged because
emit_a64_mov_i64() will emit longer code than it did during the size
calculation pass. The same problem could occur without tag-based
KASAN if one of the 16-bit words of the stack address happened to
be all-ones during the size calculation pass. Fix the problem by
assuming the worst case (4 instructions) when calculating the size
of the bpf_tramp_image address emission.

In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix address emission with tag-based KASAN enabled When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image struct on the stack is passed during the size calculation pass and an address on the heap is passed during code generation. This may cause a heap buffer overflow if the heap address is tagged because emit_a64_mov_i64() will emit longer code than it did during the size calculation pass. The same problem could occur without tag-based KASAN if one of the 16-bit words of the stack address happened to be all-ones during the size calculation pass. Fix the problem by assuming the worst case (4 instructions) when calculating the size of the bpf_tramp_image address emission.

Attila Szász discovered that the HFS+ file system implementation in the Linux Kernel contained a heap overflow vulnerability. An attacker could use a specially crafted file system image that, when mounted, could cause a denial of service or possibly execute arbitrary code. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High
Attack Vector
Local
Attack Complexity
Medium
Authentication
None
Confidentiality
Partial
Integrity
Partial
Availability
Partial
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2024-10-21 CVE Reserved
  • 2024-11-08 CVE Published
  • 2024-12-19 CVE Updated
  • 2025-03-18 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.11 < 6.11.6
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.11 < 6.11.6"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.11 < 6.12
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.11 < 6.12"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
6.10.3
Search vendor "Linux" for product "Linux Kernel" and version "6.10.3"
en
Affected