CVE-2024-50275
arm64/sve: Discard stale CPU state when handling SVE traps
Severity Score
Exploit Likelihood
Affected Versions
Public Exploits
0Exploited in Wild
-Decision
Descriptions
In the Linux kernel, the following vulnerability has been resolved: arm64/sve: Discard stale CPU state when handling SVE traps The logic for handling SVE traps manipulates saved FPSIMD/SVE state
incorrectly, and a race with preemption can result in a task having
TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SVE traps enabled). This has been observed to result
in warnings from do_sve_acc() where SVE traps are not expected while
TIF_SVE is set: | if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */ Warnings of this form have been reported intermittently, e.g. https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/ https://lore.kernel.org/linux-arm-kernel/000000000000511e9a060ce5a45c@google.com/ The race can occur when the SVE trap handler is preempted before and
after manipulating the saved FPSIMD/SVE state, starting and ending on
the same CPU, e.g. | void do_sve_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
|
| sve_init_regs() {
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| ...
| } else {
| fpsimd_to_sve(current);
| current->thread.fp_type = FP_STATE_SVE;
| }
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SVE traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| } Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace.
In the Linux kernel, the following vulnerability has been resolved: arm64/sve: Discard stale CPU state when handling SVE traps The logic for handling SVE traps manipulates saved FPSIMD/SVE state incorrectly, and a race with preemption can result in a task having TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state is stale (e.g. with SVE traps enabled). This has been observed to result in warnings from do_sve_acc() where SVE traps are not expected while TIF_SVE is set: | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ Warnings of this form have been reported intermittently, e.g. https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/ https://lore.kernel.org/linux-arm-kernel/000000000000511e9a060ce5a45c@google.com/ The race can occur when the SVE trap handler is preempted before and after manipulating the saved FPSIMD/SVE state, starting and ending on the same CPU, e.g. | void do_sve_acc(unsigned long esr, struct pt_regs *regs) | { | // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled | // task->fpsimd_cpu is 0. | // per_cpu_ptr(&fpsimd_last_state, 0) is task. | | ... | | // Preempted; migrated from CPU 0 to CPU 1. | // TIF_FOREIGN_FPSTATE is set. | | get_cpu_fpsimd_context(); | | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ | | sve_init_regs() { | if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { | ... | } else { | fpsimd_to_sve(current); | current->thread.fp_type = FP_STATE_SVE; | } | } | | put_cpu_fpsimd_context(); | | // Preempted; migrated from CPU 1 to CPU 0. | // task->fpsimd_cpu is still 0 | // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then: | // - Stale HW state is reused (with SVE traps enabled) | // - TIF_FOREIGN_FPSTATE is cleared | // - A return to userspace skips HW state restore | } Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set by calling fpsimd_flush_task_state() to detach from the saved CPU state. This ensures that a subsequent context switch will not reuse the stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the new state to be reloaded from memory prior to a return to userspace.
Attila Szász discovered that the HFS+ file system implementation in the Linux Kernel contained a heap overflow vulnerability. An attacker could use a specially crafted file system image that, when mounted, could cause a denial of service or possibly execute arbitrary code. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.
CVSS Scores
SSVC
- Decision:-
Timeline
- 2024-10-21 CVE Reserved
- 2024-11-19 CVE Published
- 2024-12-19 CVE Updated
- 2025-03-21 EPSS Updated
- ---------- Exploited in Wild
- ---------- KEV Due Date
- ---------- First Exploit
CWE
- CWE-99: Improper Control of Resource Identifiers ('Resource Injection')
CAPEC
References (8)
URL | Tag | Source |
---|---|---|
https://git.kernel.org/stable/c/cccb78ce89c45a4414db712be4986edfb92434bd | Vuln. Introduced |
URL | Date | SRC |
---|
URL | Date | SRC |
---|---|---|
https://access.redhat.com/security/cve/CVE-2024-50275 | 2025-03-10 | |
https://bugzilla.redhat.com/show_bug.cgi?id=2327198 | 2025-03-10 |
Affected Vendors, Products, and Versions
Vendor | Product | Version | Other | Status | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vendor | Product | Version | Other | Status | <-- --> | Vendor | Product | Version | Other | Status |
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 5.13 < 5.15.174 Search vendor "Linux" for product "Linux Kernel" and version " >= 5.13 < 5.15.174" | en |
Affected
| ||||||
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 5.13 < 6.1.120 Search vendor "Linux" for product "Linux Kernel" and version " >= 5.13 < 6.1.120" | en |
Affected
| ||||||
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 5.13 < 6.6.61 Search vendor "Linux" for product "Linux Kernel" and version " >= 5.13 < 6.6.61" | en |
Affected
| ||||||
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 5.13 < 6.11.8 Search vendor "Linux" for product "Linux Kernel" and version " >= 5.13 < 6.11.8" | en |
Affected
| ||||||
Linux Search vendor "Linux" | Linux Kernel Search vendor "Linux" for product "Linux Kernel" | >= 5.13 < 6.12 Search vendor "Linux" for product "Linux Kernel" and version " >= 5.13 < 6.12" | en |
Affected
|