// For flags

CVE-2024-53176

smb: During unmount, ensure all cached dir instances drop their dentry

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: smb: During unmount, ensure all cached dir instances drop their dentry The unmount process (cifs_kill_sb() calling close_all_cached_dirs()) can
race with various cached directory operations, which ultimately results
in dentries not being dropped and these kernel BUGs: BUG: Dentry ffff88814f37e358{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs]
VFS: Busy inodes after unmount of cifs (cifs)
------------[ cut here ]------------
kernel BUG at fs/super.c:661! This happens when a cfid is in the process of being cleaned up when, and
has been removed from the cfids->entries list, including: - Receiving a lease break from the server
- Server reconnection triggers invalidate_all_cached_dirs(), which removes all the cfids from the list
- The laundromat thread decides to expire an old cfid. To solve these problems, dropping the dentry is done in queued work done
in a newly-added cfid_put_wq workqueue, and close_all_cached_dirs()
flushes that workqueue after it drops all the dentries of which it's
aware. This is a global workqueue (rather than scoped to a mount), but
the queued work is minimal. The final cleanup work for cleaning up a cfid is performed via work
queued in the serverclose_wq workqueue; this is done separate from
dropping the dentries so that close_all_cached_dirs() doesn't block on
any server operations. Both of these queued works expect to invoked with a cfid reference and
a tcon reference to avoid those objects from being freed while the work
is ongoing. While we're here, add proper locking to close_all_cached_dirs(), and
locking around the freeing of cfid->dentry.

In the Linux kernel, the following vulnerability has been resolved: smb: During unmount, ensure all cached dir instances drop their dentry The unmount process (cifs_kill_sb() calling close_all_cached_dirs()) can race with various cached directory operations, which ultimately results in dentries not being dropped and these kernel BUGs: BUG: Dentry ffff88814f37e358{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs] VFS: Busy inodes after unmount of cifs (cifs) ------------[ cut here ]------------ kernel BUG at fs/super.c:661! This happens when a cfid is in the process of being cleaned up when, and has been removed from the cfids->entries list, including: - Receiving a lease break from the server - Server reconnection triggers invalidate_all_cached_dirs(), which removes all the cfids from the list - The laundromat thread decides to expire an old cfid. To solve these problems, dropping the dentry is done in queued work done in a newly-added cfid_put_wq workqueue, and close_all_cached_dirs() flushes that workqueue after it drops all the dentries of which it's aware. This is a global workqueue (rather than scoped to a mount), but the queued work is minimal. The final cleanup work for cleaning up a cfid is performed via work queued in the serverclose_wq workqueue; this is done separate from dropping the dentries so that close_all_cached_dirs() doesn't block on any server operations. Both of these queued works expect to invoked with a cfid reference and a tcon reference to avoid those objects from being freed while the work is ongoing. While we're here, add proper locking to close_all_cached_dirs(), and locking around the freeing of cfid->dentry.

Attila Szász discovered that the HFS+ file system implementation in the Linux Kernel contained a heap overflow vulnerability. An attacker could use a specially crafted file system image that, when mounted, could cause a denial of service or possibly execute arbitrary code. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
None
Confidentiality
Partial
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2024-11-19 CVE Reserved
  • 2024-12-27 CVE Published
  • 2025-01-20 CVE Updated
  • 2025-03-19 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.1 < 6.6.64
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.1 < 6.6.64"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.1 < 6.11.11
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.1 < 6.11.11"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.1 < 6.12.2
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.1 < 6.12.2"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.1 < 6.13
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.1 < 6.13"
en
Affected