// For flags

CVE-2024-58057

idpf: convert workqueues to unbound

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: idpf: convert workqueues to unbound When a workqueue is created with `WQ_UNBOUND`, its work items are
served by special worker-pools, whose host workers are not bound to
any specific CPU. In the default configuration (i.e. when
`queue_delayed_work` and friends do not specify which CPU to run the
work item on), `WQ_UNBOUND` allows the work item to be executed on any
CPU in the same node of the CPU it was enqueued on. While this
solution potentially sacrifices locality, it avoids contention with
other processes that might dominate the CPU time of the processor the
work item was scheduled on. This is not just a theoretical problem: in a particular scenario
misconfigured process was hogging most of the time from CPU0, leaving
less than 0.5% of its CPU time to the kworker. The IDPF workqueues
that were using the kworker on CPU0 suffered large completion delays
as a result, causing performance degradation, timeouts and eventual
system crash. * I have also run a manual test to gauge the performance improvement. The test consists of an antagonist process (`./stress --cpu 2`) consuming as much of CPU 0 as possible. This process is run under `taskset 01` to bind it to CPU0, and its priority is changed with `chrt -pQ 9900 10000 ${pid}` and `renice -n -20 ${pid}` after start. Then, the IDPF driver is forced to prefer CPU0 by editing all calls to `queue_delayed_work`, `mod_delayed_work`, etc... to use CPU 0. Finally, `ktraces` for the workqueue events are collected. Without the current patch, the antagonist process can force arbitrary delays between `workqueue_queue_work` and `workqueue_execute_start`, that in my tests were as high as `30ms`. With the current patch applied, the workqueue can be migrated to another unloaded CPU in the same node, and, keeping everything else equal, the maximum delay I could see was `6us`.

In the Linux kernel, the following vulnerability has been resolved: idpf: convert workqueues to unbound When a workqueue is created with `WQ_UNBOUND`, its work items are served by special worker-pools, whose host workers are not bound to any specific CPU. In the default configuration (i.e. when `queue_delayed_work` and friends do not specify which CPU to run the work item on), `WQ_UNBOUND` allows the work item to be executed on any CPU in the same node of the CPU it was enqueued on. While this solution potentially sacrifices locality, it avoids contention with other processes that might dominate the CPU time of the processor the work item was scheduled on. This is not just a theoretical problem: in a particular scenario misconfigured process was hogging most of the time from CPU0, leaving less than 0.5% of its CPU time to the kworker. The IDPF workqueues that were using the kworker on CPU0 suffered large completion delays as a result, causing performance degradation, timeouts and eventual system crash. * I have also run a manual test to gauge the performance improvement. The test consists of an antagonist process (`./stress --cpu 2`) consuming as much of CPU 0 as possible. This process is run under `taskset 01` to bind it to CPU0, and its priority is changed with `chrt -pQ 9900 10000 ${pid}` and `renice -n -20 ${pid}` after start. Then, the IDPF driver is forced to prefer CPU0 by editing all calls to `queue_delayed_work`, `mod_delayed_work`, etc... to use CPU 0. Finally, `ktraces` for the workqueue events are collected. Without the current patch, the antagonist process can force arbitrary delays between `workqueue_queue_work` and `workqueue_execute_start`, that in my tests were as high as `30ms`. With the current patch applied, the workqueue can be migrated to another unloaded CPU in the same node, and, keeping everything else equal, the maximum delay I could see was `6us`.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
None
Confidentiality
None
Integrity
None
Availability
Complete
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2025-03-06 CVE Reserved
  • 2025-03-06 CVE Published
  • 2025-03-06 CVE Updated
  • 2025-03-07 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.12.13
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.12.13"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.13.2
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.13.2"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.7 < 6.14-rc1
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.7 < 6.14-rc1"
en
Affected