// For flags

CVE-2025-22003

can: ucan: fix out of bound read in strscpy() source

Severity Score

7.1
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: can: ucan: fix out of bound read in strscpy() source Commit 7fdaf8966aae ("can: ucan: use strscpy() to instead of strncpy()")
unintentionally introduced a one byte out of bound read on strscpy()'s
source argument (which is kind of ironic knowing that strscpy() is meant
to be a more secure alternative :)). Let's consider below buffers: dest[len + 1]; /* will be NUL terminated */ src[len]; /* may not be NUL terminated */ When doing: strncpy(dest, src, len); dest[len] = '\0'; strncpy() will read up to len bytes from src. On the other hand: strscpy(dest, src, len + 1); will read up to len + 1 bytes from src, that is to say, an out of bound
read of one byte will occur on src if it is not NUL terminated. Note
that the src[len] byte is never copied, but strscpy() still needs to
read it to check whether a truncation occurred or not. This exact pattern happened in ucan. The root cause is that the source is not NUL terminated. Instead of
doing a copy in a local buffer, directly NUL terminate it as soon as
usb_control_msg() returns. With this, the local firmware_str[] variable
can be removed. On top of this do a couple refactors: - ucan_ctl_payload->raw is only used for the firmware string, so rename it to ucan_ctl_payload->fw_str and change its type from u8 to char. - ucan_device_request_in() is only used to retrieve the firmware string, so rename it to ucan_get_fw_str() and refactor it to make it directly handle all the string termination logic.

In the Linux kernel, the following vulnerability has been resolved: can: ucan: fix out of bound read in strscpy() source Commit 7fdaf8966aae ("can: ucan: use strscpy() to instead of strncpy()") unintentionally introduced a one byte out of bound read on strscpy()'s source argument (which is kind of ironic knowing that strscpy() is meant to be a more secure alternative :)). Let's consider below buffers: dest[len + 1]; /* will be NUL terminated */ src[len]; /* may not be NUL terminated */ When doing: strncpy(dest, src, len); dest[len] = '\0'; strncpy() will read up to len bytes from src. On the other hand: strscpy(dest, src, len + 1); will read up to len + 1 bytes from src, that is to say, an out of bound read of one byte will occur on src if it is not NUL terminated. Note that the src[len] byte is never copied, but strscpy() still needs to read it to check whether a truncation occurred or not. This exact pattern happened in ucan. The root cause is that the source is not NUL terminated. Instead of doing a copy in a local buffer, directly NUL terminate it as soon as usb_control_msg() returns. With this, the local firmware_str[] variable can be removed. On top of this do a couple refactors: - ucan_ctl_payload->raw is only used for the firmware string, so rename it to ucan_ctl_payload->fw_str and change its type from u8 to char. - ucan_device_request_in() is only used to retrieve the firmware string, so rename it to ucan_get_fw_str() and refactor it to make it directly handle all the string termination logic.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
None
Confidentiality
Partial
Integrity
None
Availability
None
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2024-12-29 CVE Reserved
  • 2025-04-03 CVE Published
  • 2025-05-04 CVE Updated
  • 2025-05-05 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.2 < 6.6.85
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.2 < 6.6.85"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.2 < 6.12.21
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.2 < 6.12.21"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.2 < 6.13.9
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.2 < 6.13.9"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
>= 6.2 < 6.14
Search vendor "Linux" for product "Linux Kernel" and version " >= 6.2 < 6.14"
en
Affected