// For flags

CVE-2025-37807

bpf: Fix kmemleak warning for percpu hashmap

Severity Score

5.5
*CVSS v3

Exploit Likelihood

*EPSS

Affected Versions

*CPE

Public Exploits

0
*Multiple Sources

Exploited in Wild

-
*KEV

Decision

-
*SSVC
Descriptions

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix kmemleak warning for percpu hashmap Vlad Poenaru reported the following kmemleak issue: unreferenced object 0x606fd7c44ac8 (size 32): backtrace (crc 0): pcpu_alloc_noprof+0x730/0xeb0 bpf_map_alloc_percpu+0x69/0xc0 prealloc_init+0x9d/0x1b0 htab_map_alloc+0x363/0x510 map_create+0x215/0x3a0 __sys_bpf+0x16b/0x3e0 __x64_sys_bpf+0x18/0x20 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Further investigation shows the reason is due to not 8-byte aligned
store of percpu pointer in htab_elem_set_ptr(): *(void __percpu **)(l->key + key_size) = pptr; Note that the whole htab_elem alignment is 8 (for x86_64). If the key_size
is 4, that means pptr is stored in a location which is 4 byte aligned but
not 8 byte aligned. In mm/kmemleak.c, scan_block() scans the memory based
on 8 byte stride, so it won't detect above pptr, hence reporting the memory
leak. In htab_map_alloc(), we already have htab->elem_size = sizeof(struct htab_elem) + round_up(htab->map.key_size, 8); if (percpu) htab->elem_size += sizeof(void *); else htab->elem_size += round_up(htab->map.value_size, 8); So storing pptr with 8-byte alignment won't cause any problem and can fix
kmemleak too. The issue can be reproduced with bpf selftest as well: 1. Enable CONFIG_DEBUG_KMEMLEAK config 2. Add a getchar() before skel destroy in test_hash_map() in prog_tests/for_each.c. The purpose is to keep map available so kmemleak can be detected. 3. run './test_progs -t for_each/hash_map &' and a kmemleak should be reported.

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix kmemleak warning for percpu hashmap Vlad Poenaru reported the following kmemleak issue: unreferenced object 0x606fd7c44ac8 (size 32): backtrace (crc 0): pcpu_alloc_noprof+0x730/0xeb0 bpf_map_alloc_percpu+0x69/0xc0 prealloc_init+0x9d/0x1b0 htab_map_alloc+0x363/0x510 map_create+0x215/0x3a0 __sys_bpf+0x16b/0x3e0 __x64_sys_bpf+0x18/0x20 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Further investigation shows the reason is due to not 8-byte aligned store of percpu pointer in htab_elem_set_ptr(): *(void __percpu **)(l->key + key_size) = pptr; Note that the whole htab_elem alignment is 8 (for x86_64). If the key_size is 4, that means pptr is stored in a location which is 4 byte aligned but not 8 byte aligned. In mm/kmemleak.c, scan_block() scans the memory based on 8 byte stride, so it won't detect above pptr, hence reporting the memory leak. In htab_map_alloc(), we already have htab->elem_size = sizeof(struct htab_elem) + round_up(htab->map.key_size, 8); if (percpu) htab->elem_size += sizeof(void *); else htab->elem_size += round_up(htab->map.value_size, 8); So storing pptr with 8-byte alignment won't cause any problem and can fix kmemleak too. The issue can be reproduced with bpf selftest as well: 1. Enable CONFIG_DEBUG_KMEMLEAK config 2. Add a getchar() before skel destroy in test_hash_map() in prog_tests/for_each.c. The purpose is to keep map available so kmemleak can be detected. 3. run './test_progs -t for_each/hash_map &' and a kmemleak should be reported.

Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system.

*Credits: N/A
CVSS Scores
Attack Vector
Local
Attack Complexity
Low
Privileges Required
Low
User Interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High
Attack Vector
Local
Attack Complexity
Low
Authentication
None
Confidentiality
None
Integrity
None
Availability
Partial
* Common Vulnerability Scoring System
SSVC
  • Decision:-
Exploitation
-
Automatable
-
Tech. Impact
-
* Organization's Worst-case Scenario
Timeline
  • 2025-04-16 CVE Reserved
  • 2025-05-08 CVE Published
  • 2025-05-26 CVE Updated
  • 2025-06-09 EPSS Updated
  • ---------- Exploited in Wild
  • ---------- KEV Due Date
  • ---------- First Exploit
CWE
CAPEC
Affected Vendors, Products, and Versions
Vendor Product Version Other Status
Vendor Product Version Other Status <-- --> Vendor Product Version Other Status
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.12.26
Search vendor "Linux" for product "Linux Kernel" and version " < 6.12.26"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.14.5
Search vendor "Linux" for product "Linux Kernel" and version " < 6.14.5"
en
Affected
Linux
Search vendor "Linux"
Linux Kernel
Search vendor "Linux" for product "Linux Kernel"
< 6.15
Search vendor "Linux" for product "Linux Kernel" and version " < 6.15"
en
Affected