Page 108 of 2920 results (0.007 seconds)

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: drm/exynos/vidi: fix memory leak in .get_modes() The duplicated EDID is never freed. Fix it. • https://git.kernel.org/stable/c/540ca99729e28dbe902b01039a3b4bd74520a819 https://git.kernel.org/stable/c/ebcf81504fef03f701b9711e43fea4fe2d82ebc8 https://git.kernel.org/stable/c/0acc356da8546b5c55aabfc2e2c5caa0ac9b0003 https://git.kernel.org/stable/c/777838c9b571674ef14dbddf671f372265879226 https://git.kernel.org/stable/c/dcba6bedb439581145d8aa6b0925209f23184ae1 https://git.kernel.org/stable/c/a269c5701244db2722ae0fce5d1854f5d8f31224 https://git.kernel.org/stable/c/cb3ac233434dba130281db330c4b15665b2d2c4d https://git.kernel.org/stable/c/38e3825631b1f314b21e3ade00b5a4d73 •

CVSS: 6.1EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: xhci: Handle TD clearing for multiple streams case When multiple streams are in use, multiple TDs might be in flight when an endpoint is stopped. We need to issue a Set TR Dequeue Pointer for each, to ensure everything is reset properly and the caches cleared. Change the logic so that any N>1 TDs found active for different streams are deferred until after the first one is processed, calling xhci_invalidate_cancelled_tds() again from xhci_handle_cmd_set_deq() to queue another command until we are done with all of them. Also change the error/"should never happen" paths to ensure we at least clear any affected TDs, even if we can't issue a command to clear the hardware cache, and complain loudly with an xhci_warn() if this ever happens. This problem case dates back to commit e9df17eb1408 ("USB: xhci: Correct assumptions about number of rings per endpoint.") early on in the XHCI driver's life, when stream support was first added. It was then identified but not fixed nor made into a warning in commit 674f8438c121 ("xhci: split handling halted endpoints into two steps"), which added a FIXME comment for the problem case (without materially changing the behavior as far as I can tell, though the new logic made the problem more obvious). Then later, in commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs."), it was acknowledged again. [Mathias: commit 94f339147fc3 ("xhci: Fix failure to give back some cached cancelled URBs.") was a targeted regression fix to the previously mentioned patch. Users reported issues with usb stuck after unmounting/disconnecting UAS devices. This rolled back the TD clearing of multiple streams to its original state.] Apparently the commit author was aware of the problem (yet still chose to submit it): It was still mentioned as a FIXME, an xhci_dbg() was added to log the problem condition, and the remaining issue was mentioned in the commit description. • https://git.kernel.org/stable/c/e9df17eb1408cfafa3d1844bfc7f22c7237b31b8 https://git.kernel.org/stable/c/26460c1afa311524f588e288a4941432f0de6228 https://git.kernel.org/stable/c/633f72cb6124ecda97b641fbc119340bd88d51a9 https://git.kernel.org/stable/c/949be4ec5835e0ccb3e2a8ab0e46179cb5512518 https://git.kernel.org/stable/c/61593dc413c3655e4328a351555235bc3089486a https://git.kernel.org/stable/c/5ceac4402f5d975e5a01c806438eb4e554771577 https://access.redhat.com/security/cve/CVE-2024-40927 https://bugzilla.redhat.com/show_bug.cgi?id=2297511 • CWE-820: Missing Synchronization •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. • https://git.kernel.org/stable/c/5bf196f1936bf93df31112fbdfb78c03537c07b0 https://git.kernel.org/stable/c/d66f2607d89f760cdffed88b22f309c895a2af20 https://git.kernel.org/stable/c/72d95924ee35c8cd16ef52f912483ee938a34d49 •

CVSS: 5.5EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: USB: class: cdc-wdm: Fix CPU lockup caused by excessive log messages The syzbot fuzzer found that the interrupt-URB completion callback in the cdc-wdm driver was taking too long, and the driver's immediate resubmission of interrupt URBs with -EPROTO status combined with the dummy-hcd emulation to cause a CPU lockup: cdc_wdm 1-1:1.0: nonzero urb status received: -71 cdc_wdm 1-1:1.0: wdm_int_callback - 0 bytes watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [syz-executor782:6625] CPU#0 Utilization every 4s during lockup: #1: 98% system, 0% softirq, 3% hardirq, 0% idle #2: 98% system, 0% softirq, 3% hardirq, 0% idle #3: 98% system, 0% softirq, 3% hardirq, 0% idle #4: 98% system, 0% softirq, 3% hardirq, 0% idle #5: 98% system, 1% softirq, 3% hardirq, 0% idle Modules linked in: irq event stamp: 73096 hardirqs last enabled at (73095): [<ffff80008037bc00>] console_emit_next_record kernel/printk/printk.c:2935 [inline] hardirqs last enabled at (73095): [<ffff80008037bc00>] console_flush_all+0x650/0xb74 kernel/printk/printk.c:2994 hardirqs last disabled at (73096): [<ffff80008af10b00>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline] hardirqs last disabled at (73096): [<ffff80008af10b00>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551 softirqs last enabled at (73048): [<ffff8000801ea530>] softirq_handle_end kernel/softirq.c:400 [inline] softirqs last enabled at (73048): [<ffff8000801ea530>] handle_softirqs+0xa60/0xc34 kernel/softirq.c:582 softirqs last disabled at (73043): [<ffff800080020de8>] __do_softirq+0x14/0x20 kernel/softirq.c:588 CPU: 0 PID: 6625 Comm: syz-executor782 Tainted: G W 6.10.0-rc2-syzkaller-g8867bbd4a056 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Testing showed that the problem did not occur if the two error messages -- the first two lines above -- were removed; apparently adding material to the kernel log takes a surprisingly large amount of time. In any case, the best approach for preventing these lockups and to avoid spamming the log with thousands of error messages per second is to ratelimit the two dev_err() calls. Therefore we replace them with dev_err_ratelimited(). • https://git.kernel.org/stable/c/9908a32e94de2141463e104c9924279ed3509447 https://git.kernel.org/stable/c/217d1f44fff560b3995a685a60aa66e55a7f0f56 https://git.kernel.org/stable/c/05b2cd6d33f700597e6f081b53c668a226a96d28 https://git.kernel.org/stable/c/c0747d76eb05542b5d49f67069b64ef5ff732c6c https://git.kernel.org/stable/c/53250b54c92fe087fd4b0c48f85529efe1ebd879 https://git.kernel.org/stable/c/02a4c0499fc3a02e992b4c69a9809912af372d94 https://git.kernel.org/stable/c/72a3fe36cf9f0d030865e571f45a40f9c1e07e8a https://git.kernel.org/stable/c/82075aff7ffccb1e72b0ac8aa349e4736 • CWE-667: Improper Locking •

CVSS: 7.8EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: jfs: xattr: fix buffer overflow for invalid xattr When an xattr size is not what is expected, it is printed out to the kernel log in hex format as a form of debugging. But when that xattr size is bigger than the expected size, printing it out can cause an access off the end of the buffer. Fix this all up by properly restricting the size of the debug hex dump in the kernel log. En el kernel de Linux, se resolvió la siguiente vulnerabilidad: jfs: xattr: corrige el desbordamiento del búfer para xattr no válido Cuando un tamaño de xattr no es el esperado, se imprime en el registro del kernel en formato hexadecimal como una forma de depuración. Pero cuando el tamaño de xattr es mayor que el tamaño esperado, imprimirlo puede provocar un acceso desde el final del búfer. Solucione todo esto restringiendo adecuadamente el tamaño del volcado hexadecimal de depuración en el registro del kernel. • https://git.kernel.org/stable/c/f0dedb5c511ed82cbaff4997a8decf2351ba549f https://git.kernel.org/stable/c/1e84c9b1838152a87cf453270a5fa75c5037e83a https://git.kernel.org/stable/c/fc745f6e83cb650f9a5f2c864158e3a5ea76dad0 https://git.kernel.org/stable/c/480e5bc21f2c42d90c2c16045d64d824dcdd5ec7 https://git.kernel.org/stable/c/33aecc5799c93d3ee02f853cb94e201f9731f123 https://git.kernel.org/stable/c/4598233d9748fe4db4e13b9f473588aa25e87d69 https://git.kernel.org/stable/c/b537cb2f4c4a1357479716a9c339c0bda03d873f https://git.kernel.org/stable/c/7c55b78818cfb732680c4a72ab270cc2d • CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') CWE-121: Stack-based Buffer Overflow •