Page 113 of 1387 results (0.008 seconds)

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Move unregister out of atomic section Commit '9329933699b3 ("soc: qcom: pmic_glink: Make client-lock non-sleeping")' moved the pmic_glink client list under a spinlock, as it is accessed by the rpmsg/glink callback, which in turn is invoked from IRQ context. This means that ucsi_unregister() is now called from atomic context, which isn't feasible as it's expecting a sleepable context. An effort is under way to get GLINK to invoke its callbacks in a sleepable context, but until then lets schedule the unregistration. A side effect of this is that ucsi_unregister() can now happen after the remote processor, and thereby the communication link with it, is gone. pmic_glink_send() is amended with a check to avoid the resulting NULL pointer dereference. This does however result in the user being informed about this error by the following entry in the kernel log: ucsi_glink.pmic_glink_ucsi pmic_glink.ucsi.0: failed to send UCSI write request: -5 • https://git.kernel.org/stable/c/9329933699b32d467a99befa20415c4b2172389a https://git.kernel.org/stable/c/fbadcde1572f6b00e1e343d8b24ec8bf7f3ec08d https://git.kernel.org/stable/c/8d62ab7d89a4906385ea8c11a4b2475578bec0f0 https://git.kernel.org/stable/c/bd54d7c8e76d235b4a70be3a545eb13f5ac531e4 https://git.kernel.org/stable/c/095b0001aefddcd9361097c971b7debc84e72714 https://git.kernel.org/stable/c/11bb2ffb679399f99041540cf662409905179e3a •

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd4_deleg_getattr_conflict in presence of third party lease It is not safe to dereference fl->c.flc_owner without first confirming fl->fl_lmops is the expected manager. nfsd4_deleg_getattr_conflict() tests fl_lmops but largely ignores the result and assumes that flc_owner is an nfs4_delegation anyway. This is wrong. With this patch we restore the "!= &nfsd_lease_mng_ops" case to behave as it did before the change mentioned below. This is the same as the current code, but without any reference to a possible delegation. • https://git.kernel.org/stable/c/c5967721e1063648b0506481585ba7e2e49a075e https://git.kernel.org/stable/c/1b46a871e980e3daa16fd5e77539966492e8910a https://git.kernel.org/stable/c/40927f3d0972bf86357a32a5749be71a551241b6 •

CVSS: -EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: soc: qcom: cmd-db: Map shared memory as WC, not WB Linux does not write into cmd-db region. This region of memory is write protected by XPU. XPU may sometime falsely detect clean cache eviction as "write" into the write protected region leading to secure interrupt which causes an endless loop somewhere in Trust Zone. The only reason it is working right now is because Qualcomm Hypervisor maps the same region as Non-Cacheable memory in Stage 2 translation tables. The issue manifests if we want to use another hypervisor (like Xen or KVM), which does not know anything about those specific mappings. Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC removes dependency on correct mappings in Stage 2 tables. This patch fixes the issue by updating the mapping to MEMREMAP_WC. I tested this on SA8155P with Xen. • https://git.kernel.org/stable/c/312416d9171a1460b7ed8d182b5b540c910ce80d https://git.kernel.org/stable/c/0ee9594c974368a17e85a431e9fe1c14fb65c278 https://git.kernel.org/stable/c/f5a5a5a0e95f36e2792d48e6e4b64e665eb01374 https://git.kernel.org/stable/c/eaff392c1e34fb77cc61505a31b0191e5e46e271 https://git.kernel.org/stable/c/d9d48d70e922b272875cda60d2ada89291c840cf https://git.kernel.org/stable/c/ef80520be0ff78ae5ed44cb6eee1525e65bebe70 https://git.kernel.org/stable/c/62c2d63605ca25b5db78a347ed303c0a0a77d5b4 https://git.kernel.org/stable/c/f9bb896eab221618927ae6a2f1d566567 •

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: erofs: fix out-of-bound access when z_erofs_gbuf_growsize() partially fails If z_erofs_gbuf_growsize() partially fails on a global buffer due to memory allocation failure or fault injection (as reported by syzbot [1]), new pages need to be freed by comparing to the existing pages to avoid memory leaks. However, the old gbuf->pages[] array may not be large enough, which can lead to null-ptr-deref or out-of-bound access. Fix this by checking against gbuf->nrpages in advance. [1] https://lore.kernel.org/r/000000000000f7b96e062018c6e3@google.com • https://git.kernel.org/stable/c/d6db47e571dcaecaeaafa8840d00ae849ae3907b https://git.kernel.org/stable/c/49c0e081998008cde0c872c0ff9affa1ece4b878 https://git.kernel.org/stable/c/0005e01e1e875c5e27130c5e2ed0189749d1e08a •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk() [BUG] There is an internal report that KASAN is reporting use-after-free, with the following backtrace: BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs] Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45 CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: dump_stack_lvl+0x61/0x80 print_address_description.constprop.0+0x5e/0x2f0 print_report+0x118/0x216 kasan_report+0x11d/0x1f0 btrfs_check_read_bio+0xa68/0xb70 [btrfs] process_one_work+0xce0/0x12a0 worker_thread+0x717/0x1250 kthread+0x2e3/0x3c0 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x11/0x20 Allocated by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x7d/0x80 kmem_cache_alloc_noprof+0x16e/0x3e0 mempool_alloc_noprof+0x12e/0x310 bio_alloc_bioset+0x3f0/0x7a0 btrfs_bio_alloc+0x2e/0x50 [btrfs] submit_extent_page+0x4d1/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x4b/0x60 kmem_cache_free+0x214/0x5d0 bio_free+0xed/0x180 end_bbio_data_read+0x1cc/0x580 [btrfs] btrfs_submit_chunk+0x98d/0x1880 [btrfs] btrfs_submit_bio+0x33/0x70 [btrfs] submit_one_bio+0xd4/0x130 [btrfs] submit_extent_page+0x3ea/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [CAUSE] Although I cannot reproduce the error, the report itself is good enough to pin down the cause. The call trace is the regular endio workqueue context, but the free-by-task trace is showing that during btrfs_submit_chunk() we already hit a critical error, and is calling btrfs_bio_end_io() to error out. And the original endio function called bio_put() to free the whole bio. This means a double freeing thus causing use-after-free, e.g.: 1. Enter btrfs_submit_bio() with a read bio The read bio length is 128K, crossing two 64K stripes. 2. The first run of btrfs_submit_chunk() 2.1 Call btrfs_map_block(), which returns 64K 2.2 Call btrfs_split_bio() Now there are two bios, one referring to the first 64K, the other referring to the second 64K. 2.3 The first half is submitted. 3. • https://git.kernel.org/stable/c/852eee62d31abd695cd43e1b875d664ed292a8ca https://git.kernel.org/stable/c/51722b99f41f5e722ffa10b8f61e802a0e70b331 https://git.kernel.org/stable/c/4a3b9e1a8e6cd1a8d427a905e159de58d38941cc https://git.kernel.org/stable/c/10d9d8c3512f16cad47b2ff81ec6fc4b27d8ee10 •