Page 118 of 2022 results (0.015 seconds)

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: bpf: add check for invalid name in btf_name_valid_section() If the length of the name string is 1 and the value of name[0] is NULL byte, an OOB vulnerability occurs in btf_name_valid_section() and the return value is true, so the invalid name passes the check. To solve this, you need to check if the first position is NULL byte and if the first character is printable. • https://git.kernel.org/stable/c/bd70a8fb7ca4fcb078086f4d96b048aaf1aa4786 https://git.kernel.org/stable/c/c8ffe2d4d37a05ce18c71b87421443c16f8475e5 https://git.kernel.org/stable/c/bb6705c3f93bed2af03d43691743d4c43e3c8e6f •

CVSS: -EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: fou: Fix null-ptr-deref in GRO. We observed a null-ptr-deref in fou_gro_receive() while shutting down a host. [0] The NULL pointer is sk->sk_user_data, and the offset 8 is of protocol in struct fou. When fou_release() is called due to netns dismantle or explicit tunnel teardown, udp_tunnel_sock_release() sets NULL to sk->sk_user_data. Then, the tunnel socket is destroyed after a single RCU grace period. So, in-flight udp4_gro_receive() could find the socket and execute the FOU GRO handler, where sk->sk_user_data could be NULL. Let's use rcu_dereference_sk_user_data() in fou_from_sock() and add NULL checks in FOU GRO handlers. [0]: BUG: kernel NULL pointer dereference, address: 0000000000000008 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 80000001032f4067 P4D 80000001032f4067 PUD 103240067 PMD 0 SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.10.216-204.855.amzn2.x86_64 #1 Hardware name: Amazon EC2 c5.large/, BIOS 1.0 10/16/2017 RIP: 0010:fou_gro_receive (net/ipv4/fou.c:233) [fou] Code: 41 5f c3 cc cc cc cc e8 e7 2e 69 f4 0f 1f 80 00 00 00 00 0f 1f 44 00 00 49 89 f8 41 54 48 89 f7 48 89 d6 49 8b 80 88 02 00 00 <0f> b6 48 08 0f b7 42 4a 66 25 fd fd 80 cc 02 66 89 42 4a 0f b6 42 RSP: 0018:ffffa330c0003d08 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff93d9e3a6b900 RCX: 0000000000000010 RDX: ffff93d9e3a6b900 RSI: ffff93d9e3a6b900 RDI: ffff93dac2e24d08 RBP: ffff93d9e3a6b900 R08: ffff93dacbce6400 R09: 0000000000000002 R10: 0000000000000000 R11: ffffffffb5f369b0 R12: ffff93dacbce6400 R13: ffff93dac2e24d08 R14: 0000000000000000 R15: ffffffffb4edd1c0 FS: 0000000000000000(0000) GS:ffff93daee800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000102140001 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? • https://git.kernel.org/stable/c/d92283e338f6d6503b7417536bf3478f466cbc01 https://git.kernel.org/stable/c/231c235d2f7a66f018f172e26ffd47c363f244ef https://git.kernel.org/stable/c/4494bccb52ffda22ce5a1163a776d970e6229e08 https://git.kernel.org/stable/c/d7567f098f54cb53ee3cee1c82e3d0ed9698b6b3 https://git.kernel.org/stable/c/1df42be305fe478ded1ee0c1d775f4ece713483b https://git.kernel.org/stable/c/c46cd6aaca81040deaea3500ba75126963294bd9 https://git.kernel.org/stable/c/7e4196935069947d8b70b09c1660b67b067e75cb •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds. • https://git.kernel.org/stable/c/e997b357b13a7d95de31681fc54fcc34235fa527 https://git.kernel.org/stable/c/112fd2f02b308564724b8e81006c254d20945c4b https://git.kernel.org/stable/c/611ff1b1ae989a7bcce3e2a8e132ee30e968c557 •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: pci/hotplug/pnv_php: Fix hotplug driver crash on Powernv The hotplug driver for powerpc (pci/hotplug/pnv_php.c) causes a kernel crash when we try to hot-unplug/disable the PCIe switch/bridge from the PHB. The crash occurs because although the MSI data structure has been released during disable/hot-unplug path and it has been assigned with NULL, still during unregistration the code was again trying to explicitly disable the MSI which causes the NULL pointer dereference and kernel crash. The patch fixes the check during unregistration path to prevent invoking pci_disable_msi/msix() since its data structure is already freed. • https://git.kernel.org/stable/c/4eb4085c1346d19d4a05c55246eb93e74e671048 https://git.kernel.org/stable/c/c4c681999d385e28f84808bbf3a85ea8e982da55 https://git.kernel.org/stable/c/bc1faed19db95abf0933b104910a3fb01b138f59 https://git.kernel.org/stable/c/c0d8094dc740cfacf3775bbc6a1c4720459e8de4 https://git.kernel.org/stable/c/438d522227374042b5c8798f8ce83bbe479dca4d https://git.kernel.org/stable/c/b82d4d5c736f4fd2ed224c35f554f50d1953d21e https://git.kernel.org/stable/c/bfc44075b19740d372f989f21dd03168bfda0689 https://git.kernel.org/stable/c/335e35b748527f0c06ded9eebb65387f6 •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: usb: schedule rx work after everything is set up Right now it's possible to hit NULL pointer dereference in rtw_rx_fill_rx_status on hw object and/or its fields because initialization routine can start getting USB replies before rtw_dev is fully setup. The stack trace looks like this: rtw_rx_fill_rx_status rtw8821c_query_rx_desc rtw_usb_rx_handler ... queue_work rtw_usb_read_port_complete ... usb_submit_urb rtw_usb_rx_resubmit rtw_usb_init_rx rtw_usb_probe So while we do the async stuff rtw_usb_probe continues and calls rtw_register_hw, which does all kinds of initialization (e.g. via ieee80211_register_hw) that rtw_rx_fill_rx_status relies on. Fix this by moving the first usb_submit_urb after everything is set up. For me, this bug manifested as: [ 8.893177] rtw_8821cu 1-1:1.2: band wrong, packet dropped [ 8.910904] rtw_8821cu 1-1:1.2: hw->conf.chandef.chan NULL in rtw_rx_fill_rx_status because I'm using Larry's backport of rtw88 driver with the NULL checks in rtw_rx_fill_rx_status. • https://git.kernel.org/stable/c/c83d464b82a8ad62ec9077637f75d73fe955635a https://git.kernel.org/stable/c/25eaef533bf3ccc6fee5067aac16f41f280e343e https://git.kernel.org/stable/c/adc539784c98a7cc602cbf557debfc2e7b9be8b3 •