Page 14 of 472 results (0.005 seconds)

CVSS: 7.8EPSS: 0%CPEs: 4EXPL: 0

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. • http://www.openwall.com/lists/oss-security/2022/04/05/3 http://xenbits.xen.org/xsa/advisory-400.html https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/6ETPM2OVZZ6KOS2L7QO7SIW6XWT5OW3F https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/UHFSRVLM2JUCPDC2KGB7ETPQYJLCGBLD https://security.gentoo.org/glsa/202402-07 https://www.debian.org/security/2022/dsa-5117 https://xenbits.xenproject.org/xsa/advisory-400.txt •

CVSS: 7.0EPSS: 0%CPEs: 5EXPL: 0

race in VT-d domain ID cleanup Xen domain IDs are up to 15 bits wide. VT-d hardware may allow for only less than 15 bits to hold a domain ID associating a physical device with a particular domain. Therefore internally Xen domain IDs are mapped to the smaller value range. The cleaning up of the housekeeping structures has a race, allowing for VT-d domain IDs to be leaked and flushes to be bypassed. Una carrera en la limpieza del ID de dominio de VT-d Los ID de dominio de Xen presentan hasta 15 bits de ancho. • http://www.openwall.com/lists/oss-security/2022/04/05/2 http://xenbits.xen.org/xsa/advisory-399.html https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/6ETPM2OVZZ6KOS2L7QO7SIW6XWT5OW3F https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/UHFSRVLM2JUCPDC2KGB7ETPQYJLCGBLD https://security.gentoo.org/glsa/202402-07 https://www.debian.org/security/2022/dsa-5117 https://xenbits.xenproject.org/xsa/advisory-399.txt • CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') •

CVSS: 7.8EPSS: 0%CPEs: 4EXPL: 0

IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. • http://www.openwall.com/lists/oss-security/2022/04/05/3 http://xenbits.xen.org/xsa/advisory-400.html https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/6ETPM2OVZZ6KOS2L7QO7SIW6XWT5OW3F https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/UHFSRVLM2JUCPDC2KGB7ETPQYJLCGBLD https://security.gentoo.org/glsa/202402-07 https://www.debian.org/security/2022/dsa-5117 https://xenbits.xenproject.org/xsa/advisory-400.txt •

CVSS: 5.6EPSS: 0%CPEs: 6EXPL: 0

Racy interactions between dirty vram tracking and paging log dirty hypercalls Activation of log dirty mode done by XEN_DMOP_track_dirty_vram (was named HVMOP_track_dirty_vram before Xen 4.9) is racy with ongoing log dirty hypercalls. A suitably timed call to XEN_DMOP_track_dirty_vram can enable log dirty while another CPU is still in the process of tearing down the structures related to a previously enabled log dirty mode (XEN_DOMCTL_SHADOW_OP_OFF). This is due to lack of mutually exclusive locking between both operations and can lead to entries being added in already freed slots, resulting in a memory leak. Una activación del modo de registro sucio realizada por XEN_DMOP_track_dirty_vram (es llamada HVMOP_track_dirty_vram antes de Xen versión 4.9) es producido con las hiperllamadas de registro sucio en curso. Una llamada a XEN_DMOP_track_dirty_vram con el tiempo apropiado puede habilitar log dirty mientras otra CPU está todavía en el proceso de desmontar las estructuras relacionadas con un modo log dirty previamente habilitado (XEN_DOMCTL_SHADOW_OP_OFF). • http://www.openwall.com/lists/oss-security/2022/04/05/1 http://xenbits.xen.org/xsa/advisory-397.html https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/6ETPM2OVZZ6KOS2L7QO7SIW6XWT5OW3F https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/UHFSRVLM2JUCPDC2KGB7ETPQYJLCGBLD https://security.gentoo.org/glsa/202402-07 https://www.debian.org/security/2022/dsa-5117 https://xenbits.xenproject.org/xsa/advisory-397.txt • CWE-667: Improper Locking •

CVSS: 7.0EPSS: 0%CPEs: 2EXPL: 0

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. • https://lists.debian.org/debian-lts-announce/2022/07/msg00000.html https://xenbits.xenproject.org/xsa/advisory-396.txt • CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') •