CVE-2017-3738 – openssl: rsaz_1024_mul_avx2 overflow bug on x86_64
https://notcve.org/view.php?id=CVE-2017-3738
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. • http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html http://www.oracle.com/technetwork/security-advisory/cpujan2018-3236628.html http://www.oracle.com/technetwork/security-advisory/cpujul2018-4258247.html http://www.oracle.com/technetwork/security-advisory/cpuoct2018-4428296.html http://www.securityfocus.com/bid/102118 http://www.securitytracker.com/id/1039978 https://access.redhat.com/errata/RHSA-2018:0998 https://access.redhat.com/errata/RHSA-2018:2185 https://access.redhat.co • CWE-190: Integer Overflow or Wraparound CWE-200: Exposure of Sensitive Information to an Unauthorized Actor •
CVE-2017-3737 – openssl: Read/write after SSL object in error state
https://notcve.org/view.php?id=CVE-2017-3737
OpenSSL 1.0.2 (starting from version 1.0.2b) introduced an "error state" mechanism. The intent was that if a fatal error occurred during a handshake then OpenSSL would move into the error state and would immediately fail if you attempted to continue the handshake. This works as designed for the explicit handshake functions (SSL_do_handshake(), SSL_accept() and SSL_connect()), however due to a bug it does not work correctly if SSL_read() or SSL_write() is called directly. In that scenario, if the handshake fails then a fatal error will be returned in the initial function call. If SSL_read()/SSL_write() is subsequently called by the application for the same SSL object then it will succeed and the data is passed without being decrypted/encrypted directly from the SSL/TLS record layer. • http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html http://www.oracle.com/technetwork/security-advisory/cpujan2018-3236628.html http://www.oracle.com/technetwork/security-advisory/cpujul2018-4258247.html http://www.securityfocus.com/bid/102103 http://www.securitytracker.com/id/1039978 https://access.redhat.com/errata/RHSA-2018:0998 https://access.redhat.com/errata/RHSA-2018:2185 https://access.redhat.com/errata/RHSA-2018:2186 https://access.redhat.com/errata/RHSA-2018: • CWE-125: Out-of-bounds Read CWE-391: Unchecked Error Condition CWE-787: Out-of-bounds Write •
CVE-2017-3736 – openssl: bn_sqrx8x_internal carry bug on x86_64
https://notcve.org/view.php?id=CVE-2017-3736
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL before 1.0.2m and 1.1.0 before 1.1.0g. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. • http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html http://www.oracle.com/technetwork/security-advisory/cpujan2018-3236628.html http://www.oracle.com/technetwork/security-advisory/cpujul2018-4258247.html http://www.oracle.com/technetwork/security-advisory/cpuoct2018-4428296.html http://www.securityfocus.com/bid/101666 http://www.securitytracker.com/id/1039727 https://access.redhat.com/errata/RHSA-2018:0998 https://access.redhat.com/errata/RHSA-2018:2185 https://access.redhat.co • CWE-200: Exposure of Sensitive Information to an Unauthorized Actor CWE-682: Incorrect Calculation •
CVE-2017-3735 – openssl: Malformed X.509 IPAdressFamily could cause OOB read
https://notcve.org/view.php?id=CVE-2017-3735
While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g. Al analizar una extensión IPAddressFamily en un certificado X.509, es posible realizar una sobrelectura de un bit. Esto tendría como resultado que el texto del certificado se muestre de forma incorrecta. • http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html http://www.oracle.com/technetwork/security-advisory/cpujan2018-3236628.html http://www.oracle.com/technetwork/security-advisory/cpujul2018-4258247.html http://www.oracle.com/technetwork/security-advisory/cpuoct2018-4428296.html http://www.securityfocus.com/bid/100515 http://www.securitytracker.com/id/1039726 https://access.redhat.com/errata/RHSA-2018:3221 https://access.redhat.com/errata/RHSA-2018:3505 https://cert-portal.siem • CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer CWE-125: Out-of-bounds Read •
CVE-2017-3733 – Encrypt-Then-Mac renegotiation crash
https://notcve.org/view.php?id=CVE-2017-3733
During a renegotiation handshake if the Encrypt-Then-Mac extension is negotiated where it was not in the original handshake (or vice-versa) then this can cause OpenSSL 1.1.0 before 1.1.0e to crash (dependent on ciphersuite). Both clients and servers are affected. Durante un protocolo de enlace de renegociación, si la extensión Encrypt-Then-Mac es negociada cuando no estaba en el protocolo de enlace original (o viceversa), se podría provocar el cierre inesperado de OpenSSL (dependiente de una suite de cifrado) en versiones 1.1.0 anteriores a la 1.1.0e. Tanto los clientes como los servidores se ven afectados. • http://www.oracle.com/technetwork/security-advisory/cpujan2018-3236628.html http://www.oracle.com/technetwork/security-advisory/cpuoct2017-3236626.html http://www.securityfocus.com/bid/96269 http://www.securitytracker.com/id/1037846 https://github.com/openssl/openssl/commit/4ad93618d26a3ea23d36ad5498ff4f59eff3a4d2 https://h20566.www2.hpe.com/hpsc/doc/public/display?docLocale=en_US&docId=emr_na-hpesbgn03728en_us https://www.openssl.org/news/secadv/20170216.txt https://www.oracle.com/technetwork/security-advisory& • CWE-20: Improper Input Validation •