Page 153 of 3055 results (0.007 seconds)

CVSS: -EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: don't allow mapping the MMIO HDP page with large pages We don't get the right offset in that case. The GPU has an unused 4K area of the register BAR space into which you can remap registers. We remap the HDP flush registers into this space to allow userspace (CPU or GPU) to flush the HDP when it updates VRAM. However, on systems with >4K pages, we end up exposing PAGE_SIZE of MMIO space. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: drm/amdkfd: no permite mapear la página MMIO HDP con páginas grandes. • https://git.kernel.org/stable/c/d8e408a82704c86ba87c3d58cfe69dcdb758aa07 https://git.kernel.org/stable/c/009c4d78bcf07c4ac2e3dd9f275b4eaa72b4f884 https://git.kernel.org/stable/c/f7276cdc1912325b64c33fcb1361952c06e55f63 https://git.kernel.org/stable/c/8ad4838040e5515939c071a0f511ce2661a0889d https://git.kernel.org/stable/c/89fffbdf535ce659c1a26b51ad62070566e33b28 https://git.kernel.org/stable/c/4b4cff994a27ebf7bd3fb9a798a1cdfa8d01b724 https://git.kernel.org/stable/c/6186c93560889265bfe0914609c274eff40bbeb5 https://git.kernel.org/stable/c/be4a2a81b6b90d1a47eaeaace4cc8e2cb •

CVSS: 5.5EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix overrunning reservations in ringbuf The BPF ring buffer internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters: consumer_pos is the consumer counter to show which logical position the consumer consumed the data, and producer_pos which is the producer counter denoting the amount of data reserved by all producers. Each time a record is reserved, the producer that "owns" the record will successfully advance producer counter. In user space each time a record is read, the consumer of the data advanced the consumer counter once it finished processing. Both counters are stored in separate pages so that from user space, the producer counter is read-only and the consumer counter is read-write. One aspect that simplifies and thus speeds up the implementation of both producers and consumers is how the data area is mapped twice contiguously back-to-back in the virtual memory, allowing to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory. Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for book-keeping the length and offset, and is inaccessible to the BPF program. Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ` for the BPF program to use. Bing-Jhong and Muhammad reported that it is however possible to make a second allocated memory chunk overlapping with the first chunk and as a result, the BPF program is now able to edit first chunk's header. For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to bpf_ringbuf_reserve() is made. • https://git.kernel.org/stable/c/457f44363a8894135c85b7a9afd2bd8196db24ab https://git.kernel.org/stable/c/be35504b959f2749bab280f4671e8df96dcf836f https://git.kernel.org/stable/c/0f98f40eb1ed52af8b81f61901b6c0289ff59de4 https://git.kernel.org/stable/c/d1b9df0435bc61e0b44f578846516df8ef476686 https://git.kernel.org/stable/c/511804ab701c0503b72eac08217eabfd366ba069 https://git.kernel.org/stable/c/47416c852f2a04d348ea66ee451cbdcf8119f225 https://git.kernel.org/stable/c/cfa1a2329a691ffd991fcf7248a57d752e712881 https://access.redhat.com/security/cve/CVE-2024-41009 • CWE-121: Stack-based Buffer Overflow CWE-770: Allocation of Resources Without Limits or Throttling •

CVSS: 5.5EPSS: 0%CPEs: 4EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: tipc: fix kernel panic when enabling bearer When enabling a bearer on a node, a kernel panic is observed: [ 4.498085] RIP: 0010:tipc_mon_prep+0x4e/0x130 [tipc] ... [ 4.520030] Call Trace: [ 4.520689] <IRQ> [ 4.521236] tipc_link_build_proto_msg+0x375/0x750 [tipc] [ 4.522654] tipc_link_build_state_msg+0x48/0xc0 [tipc] [ 4.524034] __tipc_node_link_up+0xd7/0x290 [tipc] [ 4.525292] tipc_rcv+0x5da/0x730 [tipc] [ 4.526346] ? __netif_receive_skb_core+0xb7/0xfc0 [ 4.527601] tipc_l2_rcv_msg+0x5e/0x90 [tipc] [ 4.528737] __netif_receive_skb_list_core+0x20b/0x260 [ 4.530068] netif_receive_skb_list_internal+0x1bf/0x2e0 [ 4.531450] ? dev_gro_receive+0x4c2/0x680 [ 4.532512] napi_complete_done+0x6f/0x180 [ 4.533570] virtnet_poll+0x29c/0x42e [virtio_net] ... The node in question is receiving activate messages in another thread after changing bearer status to allow message sending/ receiving in current thread: thread 1 | thread 2 -------- | -------- | tipc_enable_bearer() | test_and_set_bit_lock() | tipc_bearer_xmit_skb() | | tipc_l2_rcv_msg() | tipc_rcv() | __tipc_node_link_up() | tipc_link_build_state_msg() | tipc_link_build_proto_msg() | tipc_mon_prep() | { | ... | // null-pointer dereference | u16 gen = mon->dom_gen; | ... | } // Not being executed yet | tipc_mon_create() | { | ... | // allocate | mon = kzalloc(); | ... | } | Monitoring pointer in thread 2 is dereferenced before monitoring data is allocated in thread 1. • https://git.kernel.org/stable/c/35c55c9877f8de0ab129fa1a309271d0ecc868b9 https://git.kernel.org/stable/c/2de76d37d4a6dca9b96ea51da24d4290e6cfa1a5 https://git.kernel.org/stable/c/f96dc3adb9a97b8f3dfdb88796483491a3006b71 https://git.kernel.org/stable/c/f4f59fdbc748805b08c13dae14c01f0518c77c94 https://git.kernel.org/stable/c/be4977b847f5d5cedb64d50eaaf2218c3a55a3a3 • CWE-476: NULL Pointer Dereference •

CVSS: 5.5EPSS: 0%CPEs: 4EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: mISDN: Fix memory leak in dsp_pipeline_build() dsp_pipeline_build() allocates dup pointer by kstrdup(cfg), but then it updates dup variable by strsep(&dup, "|"). As a result when it calls kfree(dup), the dup variable contains NULL. Found by Linux Driver Verification project (linuxtesting.org) with SVACE. En el kernel de Linux, se resolvió la siguiente vulnerabilidad: mISDN: corrige la pérdida de memoria en dsp_pipeline_build() dsp_pipeline_build() asigna el puntero dup mediante kstrdup(cfg), pero luego actualiza la variable dup mediante strsep(&amp;dup, "|"). Como resultado, cuando llama a kfree(dup), la variable dup contiene NULL. Encontrado por el proyecto de verificación de controladores de Linux (linuxtesting.org) con SVACE. • https://git.kernel.org/stable/c/960366cf8dbb3359afaca30cf7fdbf69a6d6dda7 https://git.kernel.org/stable/c/a3d5fcc6cf2ecbba5a269631092570aa285a24cb https://git.kernel.org/stable/c/7777b1f795af1bb43867375d8a776080111aae1b https://git.kernel.org/stable/c/640445d6fc059d4514ffea79eb4196299e0e2d0f https://git.kernel.org/stable/c/c6a502c2299941c8326d029cfc8a3bc8a4607ad5 • CWE-401: Missing Release of Memory after Effective Lifetime •

CVSS: 5.5EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: vhost: fix hung thread due to erroneous iotlb entries In vhost_iotlb_add_range_ctx(), range size can overflow to 0 when start is 0 and last is ULONG_MAX. One instance where it can happen is when userspace sends an IOTLB message with iova=size=uaddr=0 (vhost_process_iotlb_msg). So, an entry with size = 0, start = 0, last = ULONG_MAX ends up in the iotlb. Next time a packet is sent, iotlb_access_ok() loops indefinitely due to that erroneous entry. Call Trace: <TASK> iotlb_access_ok+0x21b/0x3e0 drivers/vhost/vhost.c:1340 vq_meta_prefetch+0xbc/0x280 drivers/vhost/vhost.c:1366 vhost_transport_do_send_pkt+0xe0/0xfd0 drivers/vhost/vsock.c:104 vhost_worker+0x23d/0x3d0 drivers/vhost/vhost.c:372 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Reported by syzbot at: https://syzkaller.appspot.com/bug?extid=0abd373e2e50d704db87 To fix this, do two things: 1. • https://git.kernel.org/stable/c/0bbe30668d89ec8a309f28ced6d092c90fb23e8c https://git.kernel.org/stable/c/f8d88e86e90ea1002226d7ac2430152bfea003d1 https://git.kernel.org/stable/c/d9a747e6b6561280bf1791bb24c5e9e082193dad https://git.kernel.org/stable/c/e2ae38cf3d91837a493cb2093c87700ff3cbe667 • CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') •