Page 16 of 1946 results (0.004 seconds)

CVSS: -EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: thunderbolt: Mark XDomain as unplugged when router is removed I noticed that when we do discrete host router NVM upgrade and it gets hot-removed from the PCIe side as a result of NVM firmware authentication, if there is another host connected with enabled paths we hang in tearing them down. This is due to fact that the Thunderbolt networking driver also tries to cleanup the paths and ends up blocking in tb_disconnect_xdomain_paths() waiting for the domain lock. However, at this point we already cleaned the paths in tb_stop() so there is really no need for tb_disconnect_xdomain_paths() to do that anymore. Furthermore it already checks if the XDomain is unplugged and bails out early so take advantage of that and mark the XDomain as unplugged when we remove the parent router. • https://git.kernel.org/stable/c/747bc154577de6e6af4bc99abfa859b8419bb4d8 https://git.kernel.org/stable/c/23ce6ba3b95488a2b9e9f6d43b340da0c15395dc https://git.kernel.org/stable/c/80ac8d194831eca0c2f4fd862f7925532fda320c https://git.kernel.org/stable/c/18b3ad2a3cc877dd4b16f48d84aa27b78d53bf1d https://git.kernel.org/stable/c/7ca24cf9163c112bb6b580c6fb57c04a1f8b76e1 https://git.kernel.org/stable/c/e2006140ad2e01a02ed0aff49cc2ae3ceeb11f8d •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: video/aperture: optionally match the device in sysfb_disable() In aperture_remove_conflicting_pci_devices(), we currently only call sysfb_disable() on vga class devices. This leads to the following problem when the pimary device is not VGA compatible: 1. A PCI device with a non-VGA class is the boot display 2. That device is probed first and it is not a VGA device so sysfb_disable() is not called, but the device resources are freed by aperture_detach_platform_device() 3. Non-primary GPU has a VGA class and it ends up calling sysfb_disable() 4. • https://git.kernel.org/stable/c/5ae3716cfdcd286268133867f67d0803847acefc https://git.kernel.org/stable/c/485ec8f8e1d8ae12aa1daa5ad345ba8940ad2db7 https://git.kernel.org/stable/c/17e78f43de0c6da34204cc858b4cc05671ea9acf https://git.kernel.org/stable/c/b49420d6a1aeb399e5b107fc6eb8584d0860fbd7 •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: selinux,smack: don't bypass permissions check in inode_setsecctx hook Marek Gresko reports that the root user on an NFS client is able to change the security labels on files on an NFS filesystem that is exported with root squashing enabled. The end of the kerneldoc comment for __vfs_setxattr_noperm() states: * This function requires the caller to lock the inode's i_mutex before it * is executed. It also assumes that the caller will make the appropriate * permission checks. nfsd_setattr() does do permissions checking via fh_verify() and nfsd_permission(), but those don't do all the same permissions checks that are done by security_inode_setxattr() and its related LSM hooks do. Since nfsd_setattr() is the only consumer of security_inode_setsecctx(), simplest solution appears to be to replace the call to __vfs_setxattr_noperm() with a call to __vfs_setxattr_locked(). This fixes the above issue and has the added benefit of causing nfsd to recall conflicting delegations on a file when a client tries to change its security label. • https://git.kernel.org/stable/c/459584258d47ec3cc6245a82e8a49c9d08eb8b57 https://git.kernel.org/stable/c/f71ec019257ba4f7ab198bd948c5902a207bad96 https://git.kernel.org/stable/c/76a0e79bc84f466999fa501fce5bf7a07641b8a7 •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: avoid using null object of framebuffer Instead of using state->fb->obj[0] directly, get object from framebuffer by calling drm_gem_fb_get_obj() and return error code when object is null to avoid using null object of framebuffer. (cherry picked from commit 73dd0ad9e5dad53766ea3e631303430116f834b3) • https://git.kernel.org/stable/c/5d945cbcd4b16a29d6470a80dfb19738f9a4319f https://git.kernel.org/stable/c/c46dda486e4f9b86eeac40aaea65a6f93dc44dad https://git.kernel.org/stable/c/093ee72ed35c2338c87c26b6ba6f0b7789c9e14e https://git.kernel.org/stable/c/f6f5e39a3fe7cbdba190f42b28b40bdff03c8cf0 https://git.kernel.org/stable/c/49e1b214f3239b78967c6ddb8f8ec47ae047b051 https://git.kernel.org/stable/c/3b9a33235c773c7a3768060cf1d2cf8a9153bc37 •

CVSS: -EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: soc: qcom: cmd-db: Map shared memory as WC, not WB Linux does not write into cmd-db region. This region of memory is write protected by XPU. XPU may sometime falsely detect clean cache eviction as "write" into the write protected region leading to secure interrupt which causes an endless loop somewhere in Trust Zone. The only reason it is working right now is because Qualcomm Hypervisor maps the same region as Non-Cacheable memory in Stage 2 translation tables. The issue manifests if we want to use another hypervisor (like Xen or KVM), which does not know anything about those specific mappings. Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC removes dependency on correct mappings in Stage 2 tables. This patch fixes the issue by updating the mapping to MEMREMAP_WC. I tested this on SA8155P with Xen. • https://git.kernel.org/stable/c/312416d9171a1460b7ed8d182b5b540c910ce80d https://git.kernel.org/stable/c/0ee9594c974368a17e85a431e9fe1c14fb65c278 https://git.kernel.org/stable/c/f5a5a5a0e95f36e2792d48e6e4b64e665eb01374 https://git.kernel.org/stable/c/eaff392c1e34fb77cc61505a31b0191e5e46e271 https://git.kernel.org/stable/c/d9d48d70e922b272875cda60d2ada89291c840cf https://git.kernel.org/stable/c/ef80520be0ff78ae5ed44cb6eee1525e65bebe70 https://git.kernel.org/stable/c/62c2d63605ca25b5db78a347ed303c0a0a77d5b4 https://git.kernel.org/stable/c/f9bb896eab221618927ae6a2f1d566567 •