CVE-2022-4304 – Timing Oracle in RSA Decryption
https://notcve.org/view.php?id=CVE-2022-4304
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. • https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4304 https://bugzilla.redhat.com/show_bug.cgi?id=2164487 • CWE-203: Observable Discrepancy •
CVE-2021-37613
https://notcve.org/view.php?id=CVE-2021-37613
Stormshield Network Security (SNS) 1.0.0 through 4.2.3 allows a Denial of Service. Stormshield Network Security (SNS) versiones 1.0.0 hasta 4.2.3, permite una Denegación de Servicio • https://advisories.stormshield.eu https://advisories.stormshield.eu/2021-050 •
CVE-2021-3398
https://notcve.org/view.php?id=CVE-2021-3398
Stormshield Network Security (SNS) 3.x has an Integer Overflow in the high-availability component. Stormshield Network Security (SNS) 3.x, presenta un Desbordamiento de Enteros en el componente high-availability • https://advisories.stormshield.eu/2021-001 https://www.stormshield.com/category/alert • CWE-190: Integer Overflow or Wraparound •
CVE-2021-28096
https://notcve.org/view.php?id=CVE-2021-28096
An issue was discovered in Stormshield SNS before 4.2.3 (when the proxy is used). An attacker can saturate the proxy connection table. This would result in the proxy denying any new connections. Se ha detectado un problema en Stormshield SNS versiones anteriores a 4.2.3 (cuando es usado el proxy). Un atacante puede saturar la tabla de conexiones del proxy. • https://advisories.stormshield.eu/2021-005 • CWE-770: Allocation of Resources Without Limits or Throttling •
CVE-2002-20001
https://notcve.org/view.php?id=CVE-2002-20001
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE. El Protocolo de Acuerdo de Claves Diffie-Hellman permite a atacantes remotos (del lado del cliente) enviar números arbitrarios que en realidad no son claves públicas, y desencadenar costosos cálculos de exponenciación modular DHE del lado del servidor, también se conoce como un ataque D(HE)ater. • https://cert-portal.siemens.com/productcert/pdf/ssa-506569.pdf https://dheatattack.com https://dheatattack.gitlab.io https://github.com/Balasys/dheater https://github.com/mozilla/ssl-config-generator/issues/162 https://gitlab.com/dheatattack/dheater https://ieeexplore.ieee.org/document/10374117 https://support.f5.com/csp/article/K83120834 https://www.arubanetworks.com/assets/alert/ARUBA-PSA-2022-004.txt https://www.openssl.org/blog/blog/2022/10/21/tls-groups-configuration https: • CWE-400: Uncontrolled Resource Consumption •