Page 2 of 12 results (0.018 seconds)

CVSS: 7.4EPSS: 0%CPEs: 9EXPL: 0

There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. • https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/libressl-3.6.2-relnotes.txt https://ftp.openbsd.org/pub/OpenBSD/patches/7.2/common/018_x509.patch.sig https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2c6c9d439b484e1ba9830d8454a34fa4f80fdfe9 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2f7530077e0ef79d98718138716bc51ca0cad658 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=fd2af07dc083a350c959147097003a14a5e8ac4d https://security.gentoo.org/glsa/202402-08 https://www.open • CWE-704: Incorrect Type Conversion or Cast CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') •

CVSS: 5.9EPSS: 0%CPEs: 10EXPL: 0

A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. • https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4304 https://bugzilla.redhat.com/show_bug.cgi?id=2164487 • CWE-203: Observable Discrepancy •

CVSS: 7.5EPSS: 0%CPEs: 12EXPL: 0

strongSwan before 5.9.8 allows remote attackers to cause a denial of service in the revocation plugin by sending a crafted end-entity (and intermediate CA) certificate that contains a CRL/OCSP URL that points to a server (under the attacker's control) that doesn't properly respond but (for example) just does nothing after the initial TCP handshake, or sends an excessive amount of application data. strongSwan anterior a 5.9.8 permite a atacantes remotos provocar una Denegación de Servicio en el complemento de revocación enviando un certificado de entidad final (y CA intermedia) manipulado que contiene una URL CRL/OCSP que apunta a un servidor (bajo el control del atacante) que no responde adecuadamente pero (por ejemplo) simplemente no hace nada después del protocolo de enlace TCP inicial o envía una cantidad excesiva de datos de la aplicación. • https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/J3GAYIOCSLU57C45CO4UE4IV4JZE4W3L https://www.strongswan.org/blog/2022/10/03/strongswan-vulnerability-%28cve-2022-40617%29.html • CWE-400: Uncontrolled Resource Consumption •

CVSS: 9.8EPSS: 0%CPEs: 31EXPL: 4

zlib through 1.2.12 has a heap-based buffer over-read or buffer overflow in inflate in inflate.c via a large gzip header extra field. NOTE: only applications that call inflateGetHeader are affected. Some common applications bundle the affected zlib source code but may be unable to call inflateGetHeader (e.g., see the nodejs/node reference). zlib versiones hasta 1.2.12, presenta una lectura excesiva de búfer en la región heap de la memoria o desbordamiento de búfer en el archivo inflate.c por medio de un campo extra del encabezado gzip. NOTA: sólo están afectadas las aplicaciones que llaman a inflateGetHeader. Algunas aplicaciones comunes agrupan el código fuente de zlib afectado pero pueden ser incapaces de llamar a inflateGetHeader (por ejemplo, véase la referencia nodejs/node) A security vulnerability was found in zlib. • http://seclists.org/fulldisclosure/2022/Oct/37 http://seclists.org/fulldisclosure/2022/Oct/38 http://seclists.org/fulldisclosure/2022/Oct/41 http://seclists.org/fulldisclosure/2022/Oct/42 http://www.openwall.com/lists/oss-security/2022/08/05/2 http://www.openwall.com/lists/oss-security/2022/08/09/1 https://github.com/curl/curl/issues/9271 https://github.com/ivd38/zlib_overflow https://github.com/madler/zlib/blob/21767c654d31d2dccdde4330529775c6c5fd5389/zlib.h#L1062-L1063 • CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer CWE-787: Out-of-bounds Write •

CVSS: 7.5EPSS: 1%CPEs: 60EXPL: 1

The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE. El Protocolo de Acuerdo de Claves Diffie-Hellman permite a atacantes remotos (del lado del cliente) enviar números arbitrarios que en realidad no son claves públicas, y desencadenar costosos cálculos de exponenciación modular DHE del lado del servidor, también se conoce como un ataque D(HE)ater. • https://cert-portal.siemens.com/productcert/pdf/ssa-506569.pdf https://dheatattack.com https://dheatattack.gitlab.io https://github.com/Balasys/dheater https://github.com/mozilla/ssl-config-generator/issues/162 https://gitlab.com/dheatattack/dheater https://ieeexplore.ieee.org/document/10374117 https://support.f5.com/csp/article/K83120834 https://www.arubanetworks.com/assets/alert/ARUBA-PSA-2022-004.txt https://www.openssl.org/blog/blog/2022/10/21/tls-groups-configuration https: • CWE-400: Uncontrolled Resource Consumption •