CVE-2024-46687 – btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()
https://notcve.org/view.php?id=CVE-2024-46687
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk() [BUG] There is an internal report that KASAN is reporting use-after-free, with the following backtrace: BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs] Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45 CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: dump_stack_lvl+0x61/0x80 print_address_description.constprop.0+0x5e/0x2f0 print_report+0x118/0x216 kasan_report+0x11d/0x1f0 btrfs_check_read_bio+0xa68/0xb70 [btrfs] process_one_work+0xce0/0x12a0 worker_thread+0x717/0x1250 kthread+0x2e3/0x3c0 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x11/0x20 Allocated by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x7d/0x80 kmem_cache_alloc_noprof+0x16e/0x3e0 mempool_alloc_noprof+0x12e/0x310 bio_alloc_bioset+0x3f0/0x7a0 btrfs_bio_alloc+0x2e/0x50 [btrfs] submit_extent_page+0x4d1/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x4b/0x60 kmem_cache_free+0x214/0x5d0 bio_free+0xed/0x180 end_bbio_data_read+0x1cc/0x580 [btrfs] btrfs_submit_chunk+0x98d/0x1880 [btrfs] btrfs_submit_bio+0x33/0x70 [btrfs] submit_one_bio+0xd4/0x130 [btrfs] submit_extent_page+0x3ea/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [CAUSE] Although I cannot reproduce the error, the report itself is good enough to pin down the cause. The call trace is the regular endio workqueue context, but the free-by-task trace is showing that during btrfs_submit_chunk() we already hit a critical error, and is calling btrfs_bio_end_io() to error out. And the original endio function called bio_put() to free the whole bio. This means a double freeing thus causing use-after-free, e.g.: 1. Enter btrfs_submit_bio() with a read bio The read bio length is 128K, crossing two 64K stripes. 2. The first run of btrfs_submit_chunk() 2.1 Call btrfs_map_block(), which returns 64K 2.2 Call btrfs_split_bio() Now there are two bios, one referring to the first 64K, the other referring to the second 64K. 2.3 The first half is submitted. 3. • https://git.kernel.org/stable/c/852eee62d31abd695cd43e1b875d664ed292a8ca https://git.kernel.org/stable/c/51722b99f41f5e722ffa10b8f61e802a0e70b331 https://git.kernel.org/stable/c/4a3b9e1a8e6cd1a8d427a905e159de58d38941cc https://git.kernel.org/stable/c/10d9d8c3512f16cad47b2ff81ec6fc4b27d8ee10 •
CVE-2024-46686 – smb/client: avoid dereferencing rdata=NULL in smb2_new_read_req()
https://notcve.org/view.php?id=CVE-2024-46686
In the Linux kernel, the following vulnerability has been resolved: smb/client: avoid dereferencing rdata=NULL in smb2_new_read_req() This happens when called from SMB2_read() while using rdma and reaching the rdma_readwrite_threshold. Ubuntu Security Notice 7156-1 - Chenyuan Yang discovered that the USB Gadget subsystem in the Linux kernel did not properly check for the device to be enabled before writing. A local attacker could possibly use this to cause a denial of service. Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system. • https://git.kernel.org/stable/c/edf38e9f4269591d26b3783c0b348c9345580c3c https://git.kernel.org/stable/c/a6559cc1d35d3eeafb0296aca347b2f745a28a74 https://git.kernel.org/stable/c/74ab77137c99438626f4eb8134d8e26204bb5b64 https://git.kernel.org/stable/c/6df57c63c200cd05e085c3b695128260e21959b7 https://git.kernel.org/stable/c/a01859dd6aebf826576513850a3b05992809e9d2 https://git.kernel.org/stable/c/b902fb78ab21299e4dd1775e7e8d251d5c0735bc https://git.kernel.org/stable/c/c724b2ab6a46435b4e7d58ad2fbbdb7a318823cf •
CVE-2024-46685 – pinctrl: single: fix potential NULL dereference in pcs_get_function()
https://notcve.org/view.php?id=CVE-2024-46685
In the Linux kernel, the following vulnerability has been resolved: pinctrl: single: fix potential NULL dereference in pcs_get_function() pinmux_generic_get_function() can return NULL and the pointer 'function' was dereferenced without checking against NULL. Add checking of pointer 'function' in pcs_get_function(). Found by code review. Ubuntu Security Notice 7144-1 - Supraja Sridhara, Benedict Schlüter, Mark Kuhne, Andrin Bertschi, and Shweta Shinde discovered that the Confidential Computing framework in the Linux kernel for x86 platforms did not properly handle 32-bit emulation on TDX and SEV. An attacker with access to the VMM could use this to cause a denial of service or possibly execute arbitrary code. Several security issues were discovered in the Linux kernel. • https://git.kernel.org/stable/c/571aec4df5b72a80f80d1e524da8fbd7ff525c98 https://git.kernel.org/stable/c/0a2bab5ed161318f57134716accba0a30f3af191 https://git.kernel.org/stable/c/2cea369a5c2e85ab14ae716da1d1cc6d25c85e11 https://git.kernel.org/stable/c/4e9436375fcc9bd2a60ee96aba6ed53f7a377d10 https://git.kernel.org/stable/c/6341c2856785dca7006820b127278058a180c075 https://git.kernel.org/stable/c/8f0bd526921b6867c2f10a83cd4fd14139adcd92 https://git.kernel.org/stable/c/4ed45fe99ec9e3c9478bd634624cd05a57d002f7 https://git.kernel.org/stable/c/292151af6add3e5ab11b2e9916cffa5f5 •
CVE-2024-46684 – binfmt_elf_fdpic: fix AUXV size calculation when ELF_HWCAP2 is defined
https://notcve.org/view.php?id=CVE-2024-46684
In the Linux kernel, the following vulnerability has been resolved: binfmt_elf_fdpic: fix AUXV size calculation when ELF_HWCAP2 is defined create_elf_fdpic_tables() does not correctly account the space for the AUX vector when an architecture has ELF_HWCAP2 defined. Prior to the commit 10e29251be0e ("binfmt_elf_fdpic: fix /proc/<pid>/auxv") it resulted in the last entry of the AUX vector being set to zero, but with that change it results in a kernel BUG. Fix that by adding one to the number of AUXV entries (nitems) when ELF_HWCAP2 is defined. • https://git.kernel.org/stable/c/10e29251be0e9f774910c1baaa89355859491769 https://git.kernel.org/stable/c/c507da85e4f80c630deb9e98222ccf4118cbe6f8 https://git.kernel.org/stable/c/c6a09e342f8e6d3cac7f7c5c14085236aca284b9 •
CVE-2024-46683 – drm/xe: prevent UAF around preempt fence
https://notcve.org/view.php?id=CVE-2024-46683
In the Linux kernel, the following vulnerability has been resolved: drm/xe: prevent UAF around preempt fence The fence lock is part of the queue, therefore in the current design anything locking the fence should then also hold a ref to the queue to prevent the queue from being freed. However, currently it looks like we signal the fence and then drop the queue ref, but if something is waiting on the fence, the waiter is kicked to wake up at some later point, where upon waking up it first grabs the lock before checking the fence state. But if we have already dropped the queue ref, then the lock might already be freed as part of the queue, leading to uaf. To prevent this, move the fence lock into the fence itself so we don't run into lifetime issues. Alternative might be to have device level lock, or only release the queue in the fence release callback, however that might require pushing to another worker to avoid locking issues. References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2454 References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2342 References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2020 (cherry picked from commit 7116c35aacedc38be6d15bd21b2fc936eed0008b) Ubuntu Security Notice 7156-1 - Chenyuan Yang discovered that the USB Gadget subsystem in the Linux kernel did not properly check for the device to be enabled before writing. A local attacker could possibly use this to cause a denial of service. Several security issues were discovered in the Linux kernel. • https://git.kernel.org/stable/c/dd08ebf6c3525a7ea2186e636df064ea47281987 https://git.kernel.org/stable/c/10081b0b0ed201f53e24bd92deb2e0f3c3e713d4 https://git.kernel.org/stable/c/730b72480e29f63fd644f5fa57c9d46109428953 •