CVE-2020-10136 – IP-in-IP protocol allows a remote, unauthenticated attacker to route arbitrary network traffic
https://notcve.org/view.php?id=CVE-2020-10136
IP-in-IP protocol specifies IP Encapsulation within IP standard (RFC 2003, STD 1) that decapsulate and route IP-in-IP traffic is vulnerable to spoofing, access-control bypass and other unexpected behavior due to the lack of validation to verify network packets before decapsulation and routing. Múltiples productos que implementan la IP Encapsulation dentro del estándar IP (RFC 2003, STD 1) desencapsulan y enrutan el tráfico IP-in-IP sin ninguna comprobación, lo que podría permitir a un atacante remoto no autenticado enrutar tráfico arbitrario por medio de una interfaz de red expuesta y conllevar a una falsificación, omisión de control de acceso y otros comportamientos inesperados de la red. • https://datatracker.ietf.org/doc/html/rfc6169 https://kb.cert.org/vuls/id/636397 https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-nxos-ipip-dos-kCT9X4 https://www.digi.com/resources/security https://www.kb.cert.org/vuls/id/636397 • CWE-290: Authentication Bypass by Spoofing •
CVE-2020-3168 – Cisco Nexus 1000V Switch for VMware vSphere Secure Login Enhancements Denial of Service Vulnerability
https://notcve.org/view.php?id=CVE-2020-3168
A vulnerability in the Secure Login Enhancements capability of Cisco Nexus 1000V Switch for VMware vSphere could allow an unauthenticated, remote attacker to cause an affected Nexus 1000V Virtual Supervisor Module (VSM) to become inaccessible to users through the CLI. The vulnerability is due to improper resource allocation during failed CLI login attempts when login parameters that are part of the Secure Login Enhancements capability are configured on an affected device. An attacker could exploit this vulnerability by performing a high amount of login attempts against the affected device. A successful exploit could cause the affected device to become inaccessible to other users, resulting in a denial of service (DoS) condition requiring a manual power cycle of the VSM to recover. Una vulnerabilidad en la capacidad Secure Login Enhancements de Cisco Nexus 1000V Switch para VMware vSphere, podría permitir a un atacante remoto no autenticado causar que un Nexus 1000V Virtual Supervisor Module (VSM) afectado quede inaccesible para los usuarios por medio de la CLI. • https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20200226-nexus-1000v-dos • CWE-399: Resource Management Errors CWE-400: Uncontrolled Resource Consumption •
CVE-2020-3170 – Cisco NX-OS Software NX-API Denial of Service Vulnerability
https://notcve.org/view.php?id=CVE-2020-3170
A vulnerability in the NX-API feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause an NX-API system process to unexpectedly restart. The vulnerability is due to incorrect validation of the HTTP header of a request that is sent to the NX-API. An attacker could exploit this vulnerability by sending a crafted HTTP request to the NX-API on an affected device. A successful exploit could allow the attacker to cause a denial of service (DoS) condition in the NX-API service; however, the Cisco NX-OS device itself would still be available and passing network traffic. Note: The NX-API feature is disabled by default. • https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20200226-nxos-api-dos • CWE-20: Improper Input Validation •
CVE-2020-3172 – Cisco FXOS and NX-OS Software Cisco Discovery Protocol Arbitrary Code Execution and Denial of Service Vulnerability
https://notcve.org/view.php?id=CVE-2020-3172
A vulnerability in the Cisco Discovery Protocol feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code as root or cause a denial of service (DoS) condition on an affected device. The vulnerability exists because of insufficiently validated Cisco Discovery Protocol packet headers. An attacker could exploit this vulnerability by sending a crafted Cisco Discovery Protocol packet to a Layer 2-adjacent affected device. A successful exploit could allow the attacker to cause a buffer overflow that could allow the attacker to execute arbitrary code as root or cause a DoS condition on the affected device. Note: Cisco Discovery Protocol is a Layer 2 protocol. • https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20200226-fxos-nxos-cdp • CWE-20: Improper Input Validation •
CVE-2020-3120 – Cisco FXOS, IOS XR, and NX-OS Software Cisco Discovery Protocol Denial of Service Vulnerability
https://notcve.org/view.php?id=CVE-2020-3120
A vulnerability in the Cisco Discovery Protocol implementation for Cisco FXOS Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing check when the affected software processes Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to exhaust system memory, causing the device to reload. Cisco Discovery Protocol is a Layer 2 protocol. • http://packetstormsecurity.com/files/156203/Cisco-Discovery-Protocol-CDP-Remote-Device-Takeover.html https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20200205-fxnxos-iosxr-cdp-dos • CWE-190: Integer Overflow or Wraparound •