CVE-2020-5860
https://notcve.org/view.php?id=CVE-2020-5860
On BIG-IP 15.0.0-15.1.0.2, 14.1.0-14.1.2.3, 13.1.0-13.1.3.2, 12.1.0-12.1.5.1, and 11.5.2-11.6.5.1 and BIG-IQ 7.0.0, 6.0.0-6.1.0, and 5.2.0-5.4.0, in a High Availability (HA) network failover in Device Service Cluster (DSC), the failover service does not require a strong form of authentication and HA network failover traffic is not encrypted by Transport Layer Security (TLS). En BIG-IP versiones 15.0.0-15.1.0.2, 14.1.0-14.1.2.3, 13.1.0-13.1.3.2, 12.1.0-12.1.5.1 y 11.5.2-11.6.5.1 y BIG-IQ versiones 7.0. 0, 6.0.0-6.1.0 y 5.2.0-5.4.0, en un failover de red de High Availability (HA) en Device Service Cluster (DSC), el servicio failover no requiere una forma fuerte de autenticación y el trafico failover red HA no está cifrado por Transport Layer Security (TLS). • https://support.f5.com/csp/article/K67472032 • CWE-287: Improper Authentication CWE-319: Cleartext Transmission of Sensitive Information •
CVE-2019-19151
https://notcve.org/view.php?id=CVE-2019-19151
On BIG-IP versions 15.0.0-15.1.0, 14.0.0-14.1.2.3, 13.1.0-13.1.3.2, 12.1.0-12.1.5, and 11.5.2-11.6.5.1, BIG-IQ versions 7.0.0, 6.0.0-6.1.0, and 5.0.0-5.4.0, iWorkflow version 2.3.0, and Enterprise Manager version 3.1.1, authenticated users granted TMOS Shell (tmsh) privileges are able access objects on the file system which would normally be disallowed by tmsh restrictions. This allows for authenticated, low privileged attackers to access objects on the file system which would not normally be allowed. En BIG-IP versiones 15.0.0 hasta 15.1.0, 14.0.0 hasta 14.1.2.3, 13.1.0 hasta 13.1.3.2, 12.1.0 hasta 12.1.5 y 11.5.2 hasta 11.6.5.1, versiones BIG-IQ versiones 7.0.0, 6.0.0 hasta 6.1.0 y 5.0.0 hasta 5.4.0, iWorkflow versión 2.3.0 y Enterprise Manager versión 3.1.1, los usuarios autenticados con privilegios de TMOS Shell (tmsh) pueden acceder a objetos en el sistema de archivos que normalmente no estaría habilitado por las restricciones de tmsh. Esto permite que los atacantes poco privilegiados autenticados accedan a objetos en el sistema de archivos que normalmente no estarían permitidos. • https://support.f5.com/csp/article/K21711352 • CWE-269: Improper Privilege Management •
CVE-2019-10744 – nodejs-lodash: prototype pollution in defaultsDeep function leading to modifying properties
https://notcve.org/view.php?id=CVE-2019-10744
Versions of lodash lower than 4.17.12 are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload. Las versiones de lodash inferiores a 4.17.12, son vulnerables a la Contaminación de Prototipo. La función defaultsDeep podría ser engañada para agregar o modificar las propiedades de Object.prototype usando una carga útil de constructor. A Prototype Pollution vulnerability was found in lodash. • https://github.com/ossf-cve-benchmark/CVE-2019-10744 https://access.redhat.com/errata/RHSA-2019:3024 https://security.netapp.com/advisory/ntap-20191004-0005 https://snyk.io/vuln/SNYK-JS-LODASH-450202 https://support.f5.com/csp/article/K47105354?utm_source=f5support&%3Butm_medium=RSS https://www.oracle.com/security-alerts/cpujan2021.html https://www.oracle.com/security-alerts/cpuoct2020.html https://access.redhat.com/security/cve/CVE-2019-10744 https://bugzilla.redhat.com/show_ • CWE-20: Improper Input Validation CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution') •
CVE-2019-12295
https://notcve.org/view.php?id=CVE-2019-12295
In Wireshark 3.0.0 to 3.0.1, 2.6.0 to 2.6.8, and 2.4.0 to 2.4.14, the dissection engine could crash. This was addressed in epan/packet.c by restricting the number of layers and consequently limiting recursion. En Wireshark versión 3.0.0 a 3.0.1, versión 2.6.0 a 2.6.8 y versión 2.4.0 a 2.4.14, el motor de disección podría fallar. Esto fue direccionado en epan/packet.c por la restricción del número de capas y por consiguiente limitando la recursión. • http://www.securityfocus.com/bid/108464 https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=15778 https://code.wireshark.org/review/gitweb?p=wireshark.git%3Ba=commit%3Bh=7b6e197da4c497e229ed3ebf6952bae5c426a820 https://lists.debian.org/debian-lts-announce/2020/10/msg00036.html https://support.f5.com/csp/article/K06725231 https://support.f5.com/csp/article/K06725231?utm_source=f5support&%3Butm_medium=RSS https://usn.ubuntu.com/4133-1 https://www.wireshark.org/security/wnpa-sec-2019-19.html • CWE-674: Uncontrolled Recursion •
CVE-2019-1559 – 0-byte record padding oracle
https://notcve.org/view.php?id=CVE-2019-1559
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). • http://lists.opensuse.org/opensuse-security-announce/2019-03/msg00041.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00019.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00046.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00047.html http://lists.opensuse.org/opensuse-security-announce/2019-05/msg00049.html http://lists.opensuse.org/opensuse-security-announce/2019-06/msg00080.html http://www.securityfocus.com/bid/107174 https://access. • CWE-203: Observable Discrepancy CWE-325: Missing Cryptographic Step •