Page 358 of 4885 results (0.015 seconds)

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix kernel address leakage in atomic cmpxchg's r0 aux reg The implementation of BPF_CMPXCHG on a high level has the following parameters: .-[old-val] .-[new-val] BPF_R0 = cmpxchg{32,64}(DST_REG + insn->off, BPF_R0, SRC_REG) `-[mem-loc] `-[old-val] Given a BPF insn can only have two registers (dst, src), the R0 is fixed and used as an auxilliary register for input (old value) as well as output (returning old value from memory location). While the verifier performs a number of safety checks, it misses to reject unprivileged programs where R0 contains a pointer as old value. Through brute-forcing it takes about ~16sec on my machine to leak a kernel pointer with BPF_CMPXCHG. The PoC is basically probing for kernel addresses by storing the guessed address into the map slot as a scalar, and using the map value pointer as R0 while SRC_REG has a canary value to detect a matching address. Fix it by checking R0 for pointers, and reject if that's the case for unprivileged programs. • https://git.kernel.org/stable/c/5ffa25502b5ab3d639829a2d1e316cff7f59a41e https://git.kernel.org/stable/c/f87a6c160ecc8c7b417d25f508d3f076fe346136 https://git.kernel.org/stable/c/a82fe085f344ef20b452cd5f481010ff96b5c4cd •

CVSS: 5.5EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: net: netlink: af_netlink: Prevent empty skb by adding a check on len. Adding a check on len parameter to avoid empty skb. This prevents a division error in netem_enqueue function which is caused when skb->len=0 and skb->data_len=0 in the randomized corruption step as shown below. skb->data[prandom_u32() % skb_headlen(skb)] ^= 1<<(prandom_u32() % 8); Crash Report: [ 343.170349] netdevsim netdevsim0 netdevsim3: set [1, 0] type 2 family 0 port 6081 - 0 [ 343.216110] netem: version 1.3 [ 343.235841] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 343.236680] CPU: 3 PID: 4288 Comm: reproducer Not tainted 5.16.0-rc1+ [ 343.237569] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 [ 343.238707] RIP: 0010:netem_enqueue+0x1590/0x33c0 [sch_netem] [ 343.239499] Code: 89 85 58 ff ff ff e8 5f 5d e9 d3 48 8b b5 48 ff ff ff 8b 8d 50 ff ff ff 8b 85 58 ff ff ff 48 8b bd 70 ff ff ff 31 d2 2b 4f 74 <f7> f1 48 b8 00 00 00 00 00 fc ff df 49 01 d5 4c 89 e9 48 c1 e9 03 [ 343.241883] RSP: 0018:ffff88800bcd7368 EFLAGS: 00010246 [ 343.242589] RAX: 00000000ba7c0a9c RBX: 0000000000000001 RCX: 0000000000000000 [ 343.243542] RDX: 0000000000000000 RSI: ffff88800f8edb10 RDI: ffff88800f8eda40 [ 343.244474] RBP: ffff88800bcd7458 R08: 0000000000000000 R09: ffffffff94fb8445 [ 343.245403] R10: ffffffff94fb8336 R11: ffffffff94fb8445 R12: 0000000000000000 [ 343.246355] R13: ffff88800a5a7000 R14: ffff88800a5b5800 R15: 0000000000000020 [ 343.247291] FS: 00007fdde2bd7700(0000) GS:ffff888109780000(0000) knlGS:0000000000000000 [ 343.248350] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 343.249120] CR2: 00000000200000c0 CR3: 000000000ef4c000 CR4: 00000000000006e0 [ 343.250076] Call Trace: [ 343.250423] <TASK> [ 343.250713] ? memcpy+0x4d/0x60 [ 343.251162] ? netem_init+0xa0/0xa0 [sch_netem] [ 343.251795] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.252443] netem_enqueue+0xe28/0x33c0 [sch_netem] [ 343.253102] ? • https://git.kernel.org/stable/c/c54a60c8fbaa774f828e26df79f66229a8a0e010 https://git.kernel.org/stable/c/40cf2e058832d9cfaae98dfd77334926275598b6 https://git.kernel.org/stable/c/54e785f7d5c197bc06dbb8053700df7e2a093ced https://git.kernel.org/stable/c/ff3f517bf7138e01a17369042908a3f345c0ee41 https://git.kernel.org/stable/c/c0315e93552e0d840e9edc6abd71c7db82ec8f51 https://git.kernel.org/stable/c/dadce61247c6230489527cc5e343b6002d1114c5 https://git.kernel.org/stable/c/4c986072a8c9249b9398c7a18f216dc26a9f0e35 https://git.kernel.org/stable/c/f123cffdd8fe8ea6c7fded4b88516a427 • CWE-369: Divide By Zero •

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: vduse: fix memory corruption in vduse_dev_ioctl() The "config.offset" comes from the user. There needs to a check to prevent it being out of bounds. The "config.offset" and "dev->config_size" variables are both type u32. So if the offset if out of bounds then the "dev->config_size - config.offset" subtraction results in a very high u32 value. The out of bounds offset can result in memory corruption. • https://git.kernel.org/stable/c/c8a6153b6c59d95c0e091f053f6f180952ade91e https://git.kernel.org/stable/c/e6c67560b4341914bec32ec536e931c22062af65 https://git.kernel.org/stable/c/ff9f9c6e74848170fcb45c8403c80d661484c8c9 •

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: vduse: check that offset is within bounds in get_config() This condition checks "len" but it does not check "offset" and that could result in an out of bounds read if "offset > dev->config_size". The problem is that since both variables are unsigned the "dev->config_size - offset" subtraction would result in a very high unsigned value. I think these checks might not be necessary because "len" and "offset" are supposed to already have been validated using the vhost_vdpa_config_validate() function. But I do not know the code perfectly, and I like to be safe. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: vduse: verifique que el desplazamiento esté dentro de los límites en get_config() Esta condición verifica "len" pero no verifica "desplazamiento" y eso podría resultar en una lectura fuera de los límites si " desplazamiento &gt; dev-&gt;config_size". El problema es que, dado que ambas variables no están firmadas, la resta "dev-&gt;config_size - offset" daría como resultado un valor sin firmar muy alto. Creo que estas comprobaciones podrían no ser necesarias porque se supone que "len" y "offset" ya se han validado mediante la función vhost_vdpa_config_validate(). • https://git.kernel.org/stable/c/c8a6153b6c59d95c0e091f053f6f180952ade91e https://git.kernel.org/stable/c/ebbbc5fea3f648175df1aa3f127c78eb0252cc2a https://git.kernel.org/stable/c/dc1db0060c02d119fd4196924eff2d1129e9a442 •

CVSS: -EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: audit: improve robustness of the audit queue handling If the audit daemon were ever to get stuck in a stopped state the kernel's kauditd_thread() could get blocked attempting to send audit records to the userspace audit daemon. With the kernel thread blocked it is possible that the audit queue could grow unbounded as certain audit record generating events must be exempt from the queue limits else the system enter a deadlock state. This patch resolves this problem by lowering the kernel thread's socket sending timeout from MAX_SCHEDULE_TIMEOUT to HZ/10 and tweaks the kauditd_send_queue() function to better manage the various audit queues when connection problems occur between the kernel and the audit daemon. With this patch, the backlog may temporarily grow beyond the defined limits when the audit daemon is stopped and the system is under heavy audit pressure, but kauditd_thread() will continue to make progress and drain the queues as it would for other connection problems. For example, with the audit daemon put into a stopped state and the system configured to audit every syscall it was still possible to shutdown the system without a kernel panic, deadlock, etc.; granted, the system was slow to shutdown but that is to be expected given the extreme pressure of recording every syscall. The timeout value of HZ/10 was chosen primarily through experimentation and this developer's "gut feeling". There is likely no one perfect value, but as this scenario is limited in scope (root privileges would be needed to send SIGSTOP to the audit daemon), it is likely not worth exposing this as a tunable at present. • https://git.kernel.org/stable/c/5b52330bbfe63b3305765354d6046c9f7f89c011 https://git.kernel.org/stable/c/a0c48115cd2343231585f2f5e609b2ac9aa4e0af https://git.kernel.org/stable/c/75fdb751f84727d614deea0571a1490c3225d83a https://git.kernel.org/stable/c/8389f50ceb854cb437fefb9330d5024ed3c7c1f5 https://git.kernel.org/stable/c/0d3277eabd542fb662be23696e5ec9f390d688e1 https://git.kernel.org/stable/c/4cc6badff97f74d0fce65f9784b5df3b64e4250b https://git.kernel.org/stable/c/a5f4d17daf2e6cd7c1d9676b476147f6b4ac53f2 https://git.kernel.org/stable/c/f4b3ee3c85551d2d343a3ba1593040665 •