Page 475 of 3450 results (0.024 seconds)

CVSS: -EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: dmaengine: fix NULL pointer in channel unregistration function __dma_async_device_channel_register() can fail. In case of failure, chan->local is freed (with free_percpu()), and chan->local is nullified. When dma_async_device_unregister() is called (because of managed API or intentionally by DMA controller driver), channels are unconditionally unregistered, leading to this NULL pointer: [ 1.318693] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 [...] [ 1.484499] Call trace: [ 1.486930] device_del+0x40/0x394 [ 1.490314] device_unregister+0x20/0x7c [ 1.494220] __dma_async_device_channel_unregister+0x68/0xc0 Look at dma_async_device_register() function error path, channel device unregistration is done only if chan->local is not NULL. Then add the same condition at the beginning of __dma_async_device_channel_unregister() function, to avoid NULL pointer issue whatever the API used to reach this function. En el kernel de Linux, se resolvió la siguiente vulnerabilidad: dmaengine: corrige el puntero NULL en la función de cancelación del registro del canal __dma_async_device_channel_register() puede fallar. En caso de falla, chan->local se libera (con free_percpu()) y chan->local se anula. Cuando se llama a dma_async_device_unregister() (debido a una API administrada o intencionalmente por el controlador del controlador DMA), los canales se anulan incondicionalmente, lo que lleva a este puntero NULL: [1.318693] No se puede manejar la desreferencia del puntero NULL del kernel en la dirección virtual 00000000000000d0 [...] [ 1.484499] Seguimiento de llamadas: [ 1.486930] device_del+0x40/0x394 [ 1.490314] device_unregister+0x20/0x7c [ 1.494220] __dma_async_device_channel_unregister+0x68/0xc0 Mire la ruta de error de la función dma_async_device_register(), cancelación del registro del dispositivo La ración se realiza sólo si chan->local es no nulo. • https://git.kernel.org/stable/c/d2fb0a0438384fee08a418025f743913020033ce https://git.kernel.org/stable/c/9de69732dde4e443c1c7f89acbbed2c45a6a8e17 https://git.kernel.org/stable/c/047fce470412ab64cb7345f9ff5d06919078ad79 https://git.kernel.org/stable/c/2ab32986a0b9e329eb7f8f04dd57cc127f797c08 https://git.kernel.org/stable/c/7f0ccfad2031eddcc510caf4e57f2d4aa2d8a50b https://git.kernel.org/stable/c/9263fd2a63487c6d04cbb7b74a48fb12e1e352d0 https://git.kernel.org/stable/c/f5c24d94512f1b288262beda4d3dcb9629222fc7 https://lists.debian.org/debian-lts-announce/2024/06/ •

CVSS: -EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: media: mtk-jpeg: Fix use after free bug due to error path handling in mtk_jpeg_dec_device_run In mtk_jpeg_probe, &jpeg->job_timeout_work is bound with mtk_jpeg_job_timeout_work. In mtk_jpeg_dec_device_run, if error happens in mtk_jpeg_set_dec_dst, it will finally start the worker while mark the job as finished by invoking v4l2_m2m_job_finish. There are two methods to trigger the bug. If we remove the module, it which will call mtk_jpeg_remove to make cleanup. The possible sequence is as follows, which will cause a use-after-free bug. CPU0 CPU1 mtk_jpeg_dec_... | start worker | |mtk_jpeg_job_timeout_work mtk_jpeg_remove | v4l2_m2m_release | kfree(m2m_dev); | | | v4l2_m2m_get_curr_priv | m2m_dev->curr_ctx //use If we close the file descriptor, which will call mtk_jpeg_release, it will have a similar sequence. Fix this bug by starting timeout worker only if started jpegdec worker successfully. Then v4l2_m2m_job_finish will only be called in either mtk_jpeg_job_timeout_work or mtk_jpeg_dec_device_run. En el kernel de Linux, se resolvió la siguiente vulnerabilidad: medio: mtk-jpeg: Se corrigió el error de use-after-free debido al manejo de la ruta de error en mtk_jpeg_dec_device_run En mtk_jpeg_probe, &jpeg->job_timeout_work está vinculado con mtk_jpeg_job_timeout_work. • https://git.kernel.org/stable/c/b2f0d2724ba477d326e9d654d4db1c93e98f8b93 https://git.kernel.org/stable/c/43872f44eee6c6781fea1348b38885d8e78face9 https://git.kernel.org/stable/c/1b1036c60a37a30caf6759a90fe5ecd06ec35590 https://git.kernel.org/stable/c/9fec4db7fff54d9b0306a332bab31eac47eeb5f6 https://git.kernel.org/stable/c/8254d54d00eb6cdb8367399c7f912eb8d354ecd7 https://git.kernel.org/stable/c/6e2f37022f0fc0893da4d85a0500c9d547fffd4c https://git.kernel.org/stable/c/206c857dd17d4d026de85866f1b5f0969f2a109e https://lists.debian.org/debian-lts-announce/2024/06/ •

CVSS: 5.5EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: mm/sparsemem: fix race in accessing memory_section->usage The below race is observed on a PFN which falls into the device memory region with the system memory configuration where PFN's are such that [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end pfn contains the device memory PFN's as well, the compaction triggered will try on the device memory PFN's too though they end up in NOP(because pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When from other core, the section mappings are being removed for the ZONE_DEVICE region, that the PFN in question belongs to, on which compaction is currently being operated is resulting into the kernel crash with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1]. compact_zone() memunmap_pages ------------- --------------- __pageblock_pfn_to_page ...... (a)pfn_valid(): valid_section()//return true (b)__remove_pages()-> sparse_remove_section()-> section_deactivate(): [Free the array ms->usage and set ms->usage = NULL] pfn_section_valid() [Access ms->usage which is NULL] NOTE: From the above it can be said that the race is reduced to between the pfn_valid()/pfn_section_valid() and the section deactivate with SPASEMEM_VMEMAP enabled. The commit b943f045a9af("mm/sparse: fix kernel crash with pfn_section_valid check") tried to address the same problem by clearing the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns false thus ms->usage is not accessed. Fix this issue by the below steps: a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage. b) RCU protected read side critical section will either return NULL when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage. c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No attempt will be made to access ->usage after this as the SECTION_HAS_MEM_MAP is cleared thus valid_section() return false. Thanks to David/Pavan for their inputs on this patch. [1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/ On Snapdragon SoC, with the mentioned memory configuration of PFN's as [ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of issues daily while testing on a device farm. For this particular issue below is the log. • https://git.kernel.org/stable/c/f46edbd1b1516da1fb34c917775168d5df576f78 https://git.kernel.org/stable/c/90ad17575d26874287271127d43ef3c2af876cea https://git.kernel.org/stable/c/b448de2459b6d62a53892487ab18b7d823ff0529 https://git.kernel.org/stable/c/68ed9e33324021e9d6b798e9db00ca3093d2012a https://git.kernel.org/stable/c/70064241f2229f7ba7b9599a98f68d9142e81a97 https://git.kernel.org/stable/c/3a01daace71b521563c38bbbf874e14c3e58adb7 https://git.kernel.org/stable/c/5ec8e8ea8b7783fab150cf86404fc38cb4db8800 https://lists.debian.org/debian-lts-announce/2024/06/ • CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') •

CVSS: -EPSS: 0%CPEs: 6EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: convert from _raw_ to _noinc_ regmap functions for FIFO The SC16IS7XX IC supports a burst mode to access the FIFOs where the initial register address is sent ($00), followed by all the FIFO data without having to resend the register address each time. In this mode, the IC doesn't increment the register address for each R/W byte. The regmap_raw_read() and regmap_raw_write() are functions which can perform IO over multiple registers. They are currently used to read/write from/to the FIFO, and although they operate correctly in this burst mode on the SPI bus, they would corrupt the regmap cache if it was not disabled manually. The reason is that when the R/W size is more than 1 byte, these functions assume that the register address is incremented and handle the cache accordingly. Convert FIFO R/W functions to use the regmap _noinc_ versions in order to remove the manual cache control which was a workaround when using the _raw_ versions. FIFO registers are properly declared as volatile so cache will not be used/updated for FIFO accesses. • https://git.kernel.org/stable/c/dfeae619d781dee61666d5551b93ba3be755a86b https://git.kernel.org/stable/c/4e37416e4ee1b1bc17364a68973e0c63be89e611 https://git.kernel.org/stable/c/e635f652696ef6f1230621cfd89c350cb5ec6169 https://git.kernel.org/stable/c/416b10d2817c94db86829fb92ad43ce7d002c573 https://git.kernel.org/stable/c/084c24e788d9cf29c55564de368bf5284f2bb5db https://git.kernel.org/stable/c/aa7cb4787698add9367b19f7afc667662c9bdb23 https://git.kernel.org/stable/c/dbf4ab821804df071c8b566d9813083125e6d97b https://lists.debian.org/debian-lts-announce/2024/06/ •

CVSS: 4.4EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: drm: Don't unref the same fb many times by mistake due to deadlock handling If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl() we proceed to unref the fb and then retry the whole thing from the top. But we forget to reset the fb pointer back to NULL, and so if we then get another error during the retry, before the fb lookup, we proceed the unref the same fb again without having gotten another reference. The end result is that the fb will (eventually) end up being freed while it's still in use. Reset fb to NULL once we've unreffed it to avoid doing it again until we've done another fb lookup. This turned out to be pretty easy to hit on a DG2 when doing async flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I saw that drm_closefb() simply got stuck in a busy loop while walking the framebuffer list. Fortunately I was able to convince it to oops instead, and from there it was easier to track down the culprit. En el kernel de Linux se ha resuelto la siguiente vulnerabilidad: drm: No desreferenciar el mismo fb muchas veces por error debido al manejo de interbloqueos Si obtenemos un punto muerto después de la búsqueda de fb en drm_mode_page_flip_ioctl() procedemos a desreferenciar el fb y luego Vuelva a intentarlo todo desde arriba. Pero nos olvidamos de restablecer el puntero fb a NULL, por lo que si obtenemos otro error durante el reintento, antes de la búsqueda de fb, procedemos a desref el mismo fb nuevamente sin haber obtenido otra referencia. • https://git.kernel.org/stable/c/376e21a9e4c2c63ee5d8d3aa74be5082c3882229 https://git.kernel.org/stable/c/9dd334a8245011ace45e53298175c7b659edb3e7 https://git.kernel.org/stable/c/f55261469be87c55df13db76dc945f6bcd825105 https://git.kernel.org/stable/c/b4af63da9d94986c529d74499fdfe44289acd551 https://git.kernel.org/stable/c/62f2e79cf9f4f47cc9dea9cebdf58d9f7b5695e0 https://git.kernel.org/stable/c/d7afdf360f4ac142832b098b4de974e867cc063c https://git.kernel.org/stable/c/bfd0feb1b109cb63b87fdcd00122603787c75a1a https://git.kernel.org/stable/c/cb4daf271302d71a6b9a7c01bd0b6d76f • CWE-833: Deadlock •