Page 5 of 42 results (0.013 seconds)

CVSS: 7.5EPSS: 0%CPEs: 1EXPL: 0

An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function. This will most likely lead to an application crash. This function can be called on public keys supplied from untrusted sources which could allow an attacker to cause a denial of service attack. The TLS implementation in OpenSSL does not call this function but applications might call the function if there are additional security requirements imposed by standards such as FIPS 140-3. A flaw was found in OpenSSL. An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function, most likely leading to an application crash. • https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=23985bac83fd50c8e29431009302b5442f985096 https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2023-0217 https://bugzilla.redhat.com/show_bug.cgi?id=2164499 • CWE-476: NULL Pointer Dereference •

CVSS: 7.5EPSS: 0%CPEs: 4EXPL: 0

The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. • https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=63bcf189be73a9cc1264059bed6f57974be74a83 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=bbcf509bd046b34cca19c766bbddc31683d0858b https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4450 https://bugzilla.redhat.com/show_bug.cgi?id=2164494 • CWE-415: Double Free •

CVSS: 7.5EPSS: 0%CPEs: 4EXPL: 0

The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. • https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=8818064ce3c3c0f1b740a5aaba2a987e75bfbafd https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=9816136fe31d92ace4037d5da5257f763aeeb4eb https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=c3829dd8825c654652201e16f8a0a0c46ee3f344 https://security.gentoo.org/glsa/202402-08 https://security.netapp.com/advisory/ntap-20230427-0007 https://security.netapp.com/advisory/ntap-20230427-0009 https://security.netapp.com/advisory/ntap-20240621-0006 https:/&#x • CWE-416: Use After Free •

CVSS: 7.4EPSS: 0%CPEs: 9EXPL: 0

There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. • https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/libressl-3.6.2-relnotes.txt https://ftp.openbsd.org/pub/OpenBSD/patches/7.2/common/018_x509.patch.sig https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2c6c9d439b484e1ba9830d8454a34fa4f80fdfe9 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2f7530077e0ef79d98718138716bc51ca0cad658 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=fd2af07dc083a350c959147097003a14a5e8ac4d https://security.gentoo.org/glsa/202402-08 https://www.open • CWE-704: Incorrect Type Conversion or Cast CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') •

CVSS: 5.9EPSS: 0%CPEs: 10EXPL: 0

A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. • https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4304 https://bugzilla.redhat.com/show_bug.cgi?id=2164487 • CWE-203: Observable Discrepancy •