Page 50 of 2503 results (0.014 seconds)

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: drm/xe: Use reserved copy engine for user binds on faulting devices User binds map to engines with can fault, faults depend on user binds completion, thus we can deadlock. Avoid this by using reserved copy engine for user binds on faulting devices. While we are here, normalize bind queue creation with a helper. v2: - Pass in extensions to bind queue creation (CI) v3: - s/resevered/reserved (Lucas) - Fix NULL hwe check (Jonathan) • https://git.kernel.org/stable/c/dd08ebf6c3525a7ea2186e636df064ea47281987 https://git.kernel.org/stable/c/439fc1e569c57669dbb842d0a77c7ba0a82a9f5d https://git.kernel.org/stable/c/852856e3b6f679c694dd5ec41e5a3c11aa46640b •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error For all non-tracing helpers which formerly had ARG_PTR_TO_{LONG,INT} as input arguments, zero the value for the case of an error as otherwise it could leak memory. For tracing, it is not needed given CAP_PERFMON can already read all kernel memory anyway hence bpf_get_func_arg() and bpf_get_func_ret() is skipped in here. Also, the MTU helpers mtu_len pointer value is being written but also read. Technically, the MEM_UNINIT should not be there in order to always force init. Removing MEM_UNINIT needs more verifier rework though: MEM_UNINIT right now implies two things actually: i) write into memory, ii) memory does not have to be initialized. If we lift MEM_UNINIT, it then becomes: i) read into memory, ii) memory must be initialized. This means that for bpf_*_check_mtu() we're readding the issue we're trying to fix, that is, it would then be able to write back into things like .rodata BPF maps. Follow-up work will rework the MEM_UNINIT semantics such that the intent can be better expressed. • https://git.kernel.org/stable/c/d7a4cb9b6705a89937d12c8158a35a3145dc967a https://git.kernel.org/stable/c/8397bf78988f3ae9dbebb0200189a62a57264980 https://git.kernel.org/stable/c/a634fa8e480ac2423f86311a602f6295df2c8ed0 https://git.kernel.org/stable/c/599d15b6d03356a97bff7a76155c5604c42a2962 https://git.kernel.org/stable/c/594a9f5a8d2de2573a856e506f77ba7dd2cefc6a https://git.kernel.org/stable/c/4b3786a6c5397dc220b1483d8e2f4867743e966f •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: x86/tdx: Fix "in-kernel MMIO" check TDX only supports kernel-initiated MMIO operations. The handle_mmio() function checks if the #VE exception occurred in the kernel and rejects the operation if it did not. However, userspace can deceive the kernel into performing MMIO on its behalf. For example, if userspace can point a syscall to an MMIO address, syscall does get_user() or put_user() on it, triggering MMIO #VE. The kernel will treat the #VE as in-kernel MMIO. Ensure that the target MMIO address is within the kernel before decoding instruction. • https://git.kernel.org/stable/c/31d58c4e557d46fa7f8557714250fb6f89c941ae https://git.kernel.org/stable/c/25703a3c980e21548774eea8c8a87a75c5c8f58c https://git.kernel.org/stable/c/4c0c5dcb5471de5fc8f0a1c4980e5815339e1cee https://git.kernel.org/stable/c/18ecd5b74682839e7cdafb7cd1ec106df7baa18c https://git.kernel.org/stable/c/bca2e29f7e26ce7c3522f8b324c0bd85612f68e3 https://git.kernel.org/stable/c/d4fc4d01471528da8a9797a065982e05090e1d81 •

CVSS: -EPSS: 0%CPEs: 2EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode. • https://git.kernel.org/stable/c/e3db757ff9b7101ae68650ac5f6dd5743b68164e https://git.kernel.org/stable/c/96cfeb0389530ae32ade8a48ae3ae1ac3b6c009d •

CVSS: -EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: jfs: fix out-of-bounds in dbNextAG() and diAlloc() In dbNextAG() , there is no check for the case where bmp->db_numag is greater or same than MAXAG due to a polluted image, which causes an out-of-bounds. Therefore, a bounds check should be added in dbMount(). And in dbNextAG(), a check for the case where agpref is greater than bmp->db_numag should be added, so an out-of-bounds exception should be prevented. Additionally, a check for the case where agno is greater or same than MAXAG should be added in diAlloc() to prevent out-of-bounds. • https://git.kernel.org/stable/c/1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 https://git.kernel.org/stable/c/0338e66cba272351ca9d7d03f3628e390e70963b https://git.kernel.org/stable/c/ead82533278502428883085a787d5a00f15e5eb9 https://git.kernel.org/stable/c/6ce8b6ab44a8b5918c0ee373d4ad19d19017931b https://git.kernel.org/stable/c/c1ba4b8ca799ff1d99d01f37d7ccb7d5ba5533d2 https://git.kernel.org/stable/c/128d5cfdcf844cb690c9295a3a1c1114c21fc15a https://git.kernel.org/stable/c/96855f40e152989c9e7c20c4691ace5581098acc https://git.kernel.org/stable/c/e63866a475562810500ea7f784099bfe3 •