Page 54 of 3064 results (0.009 seconds)

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: s390/qeth: fix use-after-free in hsci KASAN found that addr was dereferenced after br2dev_event_work was freed. ================================================================== BUG: KASAN: use-after-free in qeth_l2_br2dev_worker+0x5ba/0x6b0 Read of size 1 at addr 00000000fdcea440 by task kworker/u760:4/540 CPU: 17 PID: 540 Comm: kworker/u760:4 Tainted: G E 6.1.0-20221128.rc7.git1.5aa3bed4ce83.300.fc36.s390x+kasan #1 Hardware name: IBM 8561 T01 703 (LPAR) Workqueue: 0.0.8000_event qeth_l2_br2dev_worker Call Trace: [<000000016944d4ce>] dump_stack_lvl+0xc6/0xf8 [<000000016942cd9c>] print_address_description.constprop.0+0x34/0x2a0 [<000000016942d118>] print_report+0x110/0x1f8 [<0000000167a7bd04>] kasan_report+0xfc/0x128 [<000000016938d79a>] qeth_l2_br2dev_worker+0x5ba/0x6b0 [<00000001673edd1e>] process_one_work+0x76e/0x1128 [<00000001673ee85c>] worker_thread+0x184/0x1098 [<000000016740718a>] kthread+0x26a/0x310 [<00000001672c606a>] __ret_from_fork+0x8a/0xe8 [<00000001694711da>] ret_from_fork+0xa/0x40 Allocated by task 108338: kasan_save_stack+0x40/0x68 kasan_set_track+0x36/0x48 __kasan_kmalloc+0xa0/0xc0 qeth_l2_switchdev_event+0x25a/0x738 atomic_notifier_call_chain+0x9c/0xf8 br_switchdev_fdb_notify+0xf4/0x110 fdb_notify+0x122/0x180 fdb_add_entry.constprop.0.isra.0+0x312/0x558 br_fdb_add+0x59e/0x858 rtnl_fdb_add+0x58a/0x928 rtnetlink_rcv_msg+0x5f8/0x8d8 netlink_rcv_skb+0x1f2/0x408 netlink_unicast+0x570/0x790 netlink_sendmsg+0x752/0xbe0 sock_sendmsg+0xca/0x110 ____sys_sendmsg+0x510/0x6a8 ___sys_sendmsg+0x12a/0x180 __sys_sendmsg+0xe6/0x168 __do_sys_socketcall+0x3c8/0x468 do_syscall+0x22c/0x328 __do_syscall+0x94/0xf0 system_call+0x82/0xb0 Freed by task 540: kasan_save_stack+0x40/0x68 kasan_set_track+0x36/0x48 kasan_save_free_info+0x4c/0x68 ____kasan_slab_free+0x14e/0x1a8 __kasan_slab_free+0x24/0x30 __kmem_cache_free+0x168/0x338 qeth_l2_br2dev_worker+0x154/0x6b0 process_one_work+0x76e/0x1128 worker_thread+0x184/0x1098 kthread+0x26a/0x310 __ret_from_fork+0x8a/0xe8 ret_from_fork+0xa/0x40 Last potentially related work creation: kasan_save_stack+0x40/0x68 __kasan_record_aux_stack+0xbe/0xd0 insert_work+0x56/0x2e8 __queue_work+0x4ce/0xd10 queue_work_on+0xf4/0x100 qeth_l2_switchdev_event+0x520/0x738 atomic_notifier_call_chain+0x9c/0xf8 br_switchdev_fdb_notify+0xf4/0x110 fdb_notify+0x122/0x180 fdb_add_entry.constprop.0.isra.0+0x312/0x558 br_fdb_add+0x59e/0x858 rtnl_fdb_add+0x58a/0x928 rtnetlink_rcv_msg+0x5f8/0x8d8 netlink_rcv_skb+0x1f2/0x408 netlink_unicast+0x570/0x790 netlink_sendmsg+0x752/0xbe0 sock_sendmsg+0xca/0x110 ____sys_sendmsg+0x510/0x6a8 ___sys_sendmsg+0x12a/0x180 __sys_sendmsg+0xe6/0x168 __do_sys_socketcall+0x3c8/0x468 do_syscall+0x22c/0x328 __do_syscall+0x94/0xf0 system_call+0x82/0xb0 Second to last potentially related work creation: kasan_save_stack+0x40/0x68 __kasan_record_aux_stack+0xbe/0xd0 kvfree_call_rcu+0xb2/0x760 kernfs_unlink_open_file+0x348/0x430 kernfs_fop_release+0xc2/0x320 __fput+0x1ae/0x768 task_work_run+0x1bc/0x298 exit_to_user_mode_prepare+0x1a0/0x1a8 __do_syscall+0x94/0xf0 system_call+0x82/0xb0 The buggy address belongs to the object at 00000000fdcea400 which belongs to the cache kmalloc-96 of size 96 The buggy address is located 64 bytes inside of 96-byte region [00000000fdcea400, 00000000fdcea460) The buggy address belongs to the physical page: page:000000005a9c26e8 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xfdcea flags: 0x3ffff00000000200(slab|node=0|zone=1|lastcpupid=0x1ffff) raw: 3ffff00000000200 0000000000000000 0000000100000122 000000008008cc00 raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: 00000000fdcea300: fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc 00000000fdcea380: fb fb fb fb fb fb f ---truncated--- • https://git.kernel.org/stable/c/f7936b7b2663c99a096a5c432ba96ab1e91a6c0f https://git.kernel.org/stable/c/db6343a5b0d9661f2dd76f653c6d274d38234d2b https://git.kernel.org/stable/c/bde0dfc7c4569406a6ddeec363d04a1df7b3073f https://git.kernel.org/stable/c/ebaaadc332cd21e9df4dcf9ce12552d9354bbbe4 •

CVSS: -EPSS: 0%CPEs: 4EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: rtc: cmos: Fix event handler registration ordering issue Because acpi_install_fixed_event_handler() enables the event automatically on success, it is incorrect to call it before the handler routine passed to it is ready to handle events. Unfortunately, the rtc-cmos driver does exactly the incorrect thing by calling cmos_wake_setup(), which passes rtc_handler() to acpi_install_fixed_event_handler(), before cmos_do_probe(), because rtc_handler() uses dev_get_drvdata() to get to the cmos object pointer and the driver data pointer is only populated in cmos_do_probe(). This leads to a NULL pointer dereference in rtc_handler() on boot if the RTC fixed event happens to be active at the init time. To address this issue, change the initialization ordering of the driver so that cmos_wake_setup() is always called after a successful cmos_do_probe() call. While at it, change cmos_pnp_probe() to call cmos_do_probe() after the initial if () statement used for computing the IRQ argument to be passed to cmos_do_probe() which is cleaner than calling it in each branch of that if () (local variable "irq" can be of type int, because it is passed to that function as an argument of type int). Note that commit 6492fed7d8c9 ("rtc: rtc-cmos: Do not check ACPI_FADT_LOW_POWER_S0") caused this issue to affect a larger number of systems, because previously it only affected systems with ACPI_FADT_LOW_POWER_S0 set, but it is present regardless of that commit. • https://git.kernel.org/stable/c/a474aaedac99ba86e28ef6c912a7647c482db6dd https://git.kernel.org/stable/c/0bcfccb48696aba475f046c2021f0733659ce0ef https://git.kernel.org/stable/c/60c6e563a843032cf6ff84b2fb732cd8754fc10d https://git.kernel.org/stable/c/1ba745fce13d19775100eece30b0bfb8b8b10ea6 https://git.kernel.org/stable/c/4919d3eb2ec0ee364f7e3cf2d99646c1b224fae8 •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: PCI: mt7621: Add sentinel to quirks table Current driver is missing a sentinel in the struct soc_device_attribute array, which causes an oops when assessed by the soc_device_match(mt7621_pcie_quirks_match) call. This was only exposed once the CONFIG_SOC_MT7621 mt7621 soc_dev_attr was fixed to register the SOC as a device, in: commit 7c18b64bba3b ("mips: ralink: mt7621: do not use kzalloc too early") Fix it by adding the required sentinel. • https://git.kernel.org/stable/c/b483b4e4d3f6bfd5089b9e6dc9ba259879c6ce6f https://git.kernel.org/stable/c/21fd877300b01d25c5807c327848fdc7c813cf0e https://git.kernel.org/stable/c/3e9c395ef2d52975b2c2894d2da09d6db2958bc6 https://git.kernel.org/stable/c/cb7323ece786f243f6d6ccf2e5b2b27b736bdc04 https://git.kernel.org/stable/c/a4997bae1b5b012c8a6e2643e26578a7bc2cae36 https://git.kernel.org/stable/c/19098934f910b4d47cb30251dd39ffa57bef9523 •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: ASoC: ops: Check bounds for second channel in snd_soc_put_volsw_sx() The bounds checks in snd_soc_put_volsw_sx() are only being applied to the first channel, meaning it is possible to write out of bounds values to the second channel in stereo controls. Add appropriate checks. • https://git.kernel.org/stable/c/56288987843c3cb343e81e5fa51549cbaf541bd0 https://git.kernel.org/stable/c/cf1c225f1927891ae388562b78ced7840c3723b9 https://git.kernel.org/stable/c/18a168d85eadcfd45f015b5ecd2a97801b959e43 https://git.kernel.org/stable/c/9796d07c753164b7e6b0d7ef23fb4482840a9ef8 https://git.kernel.org/stable/c/50b5f6d4d9d2d69a7498c44fd8b26e13d73d3d98 https://git.kernel.org/stable/c/cf611d786796ec33da09d8c83d7d7f4e557b27de https://git.kernel.org/stable/c/1798b62d642e7b3d4ea3403914c3caf4e438465d https://git.kernel.org/stable/c/97eea946b93961fffd29448dcda7398d0 •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: perf: Fix perf_pending_task() UaF Per syzbot it is possible for perf_pending_task() to run after the event is free()'d. There are two related but distinct cases: - the task_work was already queued before destroying the event; - destroying the event itself queues the task_work. The first cannot be solved using task_work_cancel() since perf_release() itself might be called from a task_work (____fput), which means the current->task_works list is already empty and task_work_cancel() won't be able to find the perf_pending_task() entry. The simplest alternative is extending the perf_event lifetime to cover the task_work. The second is just silly, queueing a task_work while you know the event is going away makes no sense and is easily avoided by re-arranging how the event is marked STATE_DEAD and ensuring it goes through STATE_OFF on the way down. • https://git.kernel.org/stable/c/8bffa95ac19ff27c8261904f89d36c7fcf215d59 https://git.kernel.org/stable/c/78e1317a174edbfd1182599bf76c092a2877672c https://git.kernel.org/stable/c/517e6a301f34613bff24a8e35b5455884f2d83d8 •