Page 552 of 4283 results (0.011 seconds)

CVSS: -EPSS: 0%CPEs: 10EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: Both cadence-quadspi ->runtime_suspend() and ->runtime_resume() implementations start with: struct cqspi_st *cqspi = dev_get_drvdata(dev); struct spi_controller *host = dev_get_drvdata(dev); This obviously cannot be correct, unless "struct cqspi_st" is the first member of " struct spi_controller", or the other way around, but it is not the case. "struct spi_controller" is allocated by devm_spi_alloc_host(), which allocates an extra amount of memory for private data, used to store "struct cqspi_st". The ->probe() function of the cadence-quadspi driver then sets the device drvdata to store the address of the "struct cqspi_st" structure. Therefore: struct cqspi_st *cqspi = dev_get_drvdata(dev); is correct, but: struct spi_controller *host = dev_get_drvdata(dev); is not, as it makes "host" point not to a "struct spi_controller" but to the same "struct cqspi_st" structure as above. This obviously leads to bad things (memory corruption, kernel crashes) directly during ->probe(), as ->probe() enables the device using PM runtime, leading the ->runtime_resume() hook being called, which in turns calls spi_controller_resume() with the wrong pointer. This has at least been reported [0] to cause a kernel crash, but the exact behavior will depend on the memory contents. [0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/ This issue potentially affects all platforms that are currently using the cadence-quadspi driver. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: spi: cadence-qspi: corrige la referencia del puntero en los ganchos PM en tiempo de ejecución dev_get_drvdata() se utiliza para adquirir el puntero a cqspi y el controlador SPI. Ninguno de los dos integra al otro; Esto conduce a la corrupción de la memoria. • https://git.kernel.org/stable/c/2087e85bb66ee3652dafe732bb9b9b896229eafc https://git.kernel.org/stable/c/e3f9fc9a4f1499cc9e1bad4482d377494e367b3d https://git.kernel.org/stable/c/6716203844bc8489af5e5564f0fa31e0c094a7ff https://git.kernel.org/stable/c/b24f1ecc8fe2ceefc14af02edb1744c246d87bf7 https://git.kernel.org/stable/c/d453f25faf681799d636fe9d6899ad91c45aa11e https://git.kernel.org/stable/c/79acf7fb856eade9c3d0cf00fd34a04bf5c43a1c https://git.kernel.org/stable/c/18cb554e9da81bc4eca653c17a0d65e8b5835c09 https://git.kernel.org/stable/c/1368dbc0a432acf9fc0dcb23bfe52d32c •

CVSS: -EPSS: 0%CPEs: 13EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter syzbot reported the following uninit-value access issue [1]: netlink_to_full_skb() creates a new `skb` and puts the `skb->data` passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data size is specified as `len` and passed to skb_put_data(). This `len` is based on `skb->end` that is not data offset but buffer offset. The `skb->end` contains data and tailroom. Since the tailroom is not initialized when the new `skb` created, KMSAN detects uninitialized memory area when copying the data. This patch resolved this issue by correct the len from `skb->end` to `skb->len`, which is the actual data offset. BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline] BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline] BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copy_to_user_iter lib/iov_iter.c:24 [inline] iterate_ubuf include/linux/iov_iter.h:29 [inline] iterate_and_advance2 include/linux/iov_iter.h:245 [inline] iterate_and_advance include/linux/iov_iter.h:271 [inline] _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186 copy_to_iter include/linux/uio.h:197 [inline] simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546 skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline] packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482 sock_recvmsg_nosec net/socket.c:1044 [inline] sock_recvmsg net/socket.c:1066 [inline] sock_read_iter+0x467/0x580 net/socket.c:1136 call_read_iter include/linux/fs.h:2014 [inline] new_sync_read fs/read_write.c:389 [inline] vfs_read+0x8f6/0xe00 fs/read_write.c:470 ksys_read+0x20f/0x4c0 fs/read_write.c:613 __do_sys_read fs/read_write.c:623 [inline] __se_sys_read fs/read_write.c:621 [inline] __x64_sys_read+0x93/0xd0 fs/read_write.c:621 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was stored to memory at: skb_put_data include/linux/skbuff.h:2622 [inline] netlink_to_full_skb net/netlink/af_netlink.c:181 [inline] __netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline] __netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325 netlink_deliver_tap net/netlink/af_netlink.c:338 [inline] netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline] netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368 netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: free_pages_prepare mm/page_alloc.c:1087 [inline] free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347 free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533 release_pages+0x23d3/0x2410 mm/swap.c:1042 free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316 tlb_batch_pages ---truncated--- En el kernel de Linux, se resolvió la siguiente vulnerabilidad: netlink: Fix kernel-infoleak-after-free en __skb_datagram_iter syzbot informó el siguiente problema de acceso al valor uninit [1]: netlink_to_full_skb() crea un nuevo `skb` y coloca el ` skb->data` pasó como primer argumento de netlink_to_full_skb() al nuevo `skb`. • https://git.kernel.org/stable/c/1853c949646005b5959c483becde86608f548f24 https://git.kernel.org/stable/c/92994a5f49d0a81c8643452d5c0a6e8b31d85a61 https://git.kernel.org/stable/c/85aec6328f3346b0718211faad564a3ffa64f60e https://git.kernel.org/stable/c/d38200098e3203ba30ba06ed3f345ec6ca75234c https://git.kernel.org/stable/c/65d48c630ff80a19c39751a4a6d3315f4c3c0280 https://git.kernel.org/stable/c/62f43b58d2b2c4f0200b9ca2b997f4c484f0272f https://git.kernel.org/stable/c/ec343a55b687a452f5e87f3b52bf9f155864df65 https://git.kernel.org/stable/c/9ae51361da43270f4ba0eb924427a07e8 •

CVSS: 5.5EPSS: 0%CPEs: 7EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: prevent perpetual headroom growth syzkaller triggered following kasan splat: BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191 [..] kasan_report+0xda/0x110 mm/kasan/report.c:588 __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline] ___skb_get_hash net/core/flow_dissector.c:1791 [inline] __skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856 skb_get_hash include/linux/skbuff.h:1556 [inline] ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748 ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 __dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592 ... ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235 ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323 .. iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831 ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 ... The splat occurs because skb->data points past skb->head allocated area. This is because neigh layer does: __skb_pull(skb, skb_network_offset(skb)); ... but skb_network_offset() returns a negative offset and __skb_pull() arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value. The negative value is returned because skb->head and skb->data distance is more than 64k and skb->network_header (u16) has wrapped around. The bug is in the ip_tunnel infrastructure, which can cause dev->needed_headroom to increment ad infinitum. The syzkaller reproducer consists of packets getting routed via a gre tunnel, and route of gre encapsulated packets pointing at another (ipip) tunnel. The ipip encapsulation finds gre0 as next output device. This results in the following pattern: 1). First packet is to be sent out via gre0. Route lookup found an output device, ipip0. 2). ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future output device, rt.dev->needed_headroom (ipip0). 3). ip output / start_xmit moves skb on to ipip0. which runs the same code path again (xmit recursion). 4). Routing step for the post-gre0-encap packet finds gre0 as output device to use for ipip0 encapsulated packet. tunl0->needed_headroom is then incremented based on the (already bumped) gre0 device headroom. This repeats for every future packet: gre0->needed_headroom gets inflated because previous packets' ipip0 step incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0 needed_headroom was increased. For each subsequent packet, gre/ipip0->needed_headroom grows until post-expand-head reallocations result in a skb->head/data distance of more than 64k. Once that happens, skb->network_header (u16) wraps around when pskb_expand_head tries to make sure that skb_network_offset() is unchanged after the headroom expansion/reallocation. After this skb_network_offset(skb) returns a different (and negative) result post headroom expansion. The next trip to neigh layer (or anything else that would __skb_pull the network header) makes skb->data point to a memory location outside skb->head area. v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to prevent perpetual increase instead of dropping the headroom increment completely. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: net: ip_tunnel: evita el crecimiento perpetuo del espacio libre syzkaller activado después de kasan splat: ERROR: KASAN: use-after-free en __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 Lectura del tamaño 1 en la dirección ffff88812fb4000e mediante la tarea syz-executor183/5191 [..] kasan_report+0xda/0x110 mm/kasan/report.c:588 __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170 skb_flow_dissect_flow_key incluir/linux /skbuff.h:1514 [en línea] ___skb_get_hash net/core/flow_dissector.c:1791 [en línea] __skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856 skb_get_hash include/linux/skbuff.h:1556 [en línea] ip_tunnel_xmit +0x1855/0x33c0 net/ipv4/ip_tunnel.c:748 ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308 __netdev_start_xmit include/linux/netdevice.h:4940 [en línea] netdev_start_xmit include/linux/netdevice.h:4954 [en línea] xmit_one net/core/dev.c:3548 [en línea] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 __dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice .h:3134 [en línea] neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592 ... ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235 ip_finish_output+0x31/0x310 net/ipv4/ip_output.c :323 .. iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831 ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665 __netdev_start_xmit incluir /linux /netdevice.h:4940 [en línea] netdev_start_xmit include/linux/netdevice.h:4954 [en línea] xmit_one net/core/dev.c:3548 [en línea] dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564 . .. • https://git.kernel.org/stable/c/243aad830e8a4cdda261626fbaeddde16b08d04a https://git.kernel.org/stable/c/f81e94d2dcd2397137edcb8b85f4c5bed5d22383 https://git.kernel.org/stable/c/2e95350fe9db9d53c701075060ac8ac883b68aee https://git.kernel.org/stable/c/afec0c5cd2ed71ca95a8b36a5e6d03333bf34282 https://git.kernel.org/stable/c/ab63de24ebea36fe73ac7121738595d704b66d96 https://git.kernel.org/stable/c/a0a1db40b23e8ff86dea2786c5ea1470bb23ecb9 https://git.kernel.org/stable/c/049d7989c67e8dd50f07a2096dbafdb41331fb9b https://git.kernel.org/stable/c/5ae1e9922bbdbaeb9cfbe91085ab75927 •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: net: veth: clear GRO when clearing XDP even when down veth sets NETIF_F_GRO automatically when XDP is enabled, because both features use the same NAPI machinery. The logic to clear NETIF_F_GRO sits in veth_disable_xdp() which is called both on ndo_stop and when XDP is turned off. To avoid the flag from being cleared when the device is brought down, the clearing is skipped when IFF_UP is not set. Bringing the device down should indeed not modify its features. Unfortunately, this means that clearing is also skipped when XDP is disabled _while_ the device is down. And there's nothing on the open path to bring the device features back into sync. IOW if user enables XDP, disables it and then brings the device up we'll end up with a stray GRO flag set but no NAPI instances. We don't depend on the GRO flag on the datapath, so the datapath won't crash. We will crash (or hang), however, next time features are sync'ed (either by user via ethtool or peer changing its config). The GRO flag will go away, and veth will try to disable the NAPIs. But the open path never created them since XDP was off, the GRO flag was a stray. If NAPI was initialized before we'll hang in napi_disable(). If it never was we'll crash trying to stop uninitialized hrtimer. Move the GRO flag updates to the XDP enable / disable paths, instead of mixing them with the ndo_open / ndo_close paths. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: net: veth: borra GRO al borrar XDP incluso cuando está desactivado veth configura NETIF_F_GRO automáticamente cuando XDP está habilitado, porque ambas funciones utilizan la misma maquinaria NAPI. • https://git.kernel.org/stable/c/d3256efd8e8b234a6251e4d4580bd2c3c31fdc4c https://git.kernel.org/stable/c/f011c103e654d83dc85f057a7d1bd0960d02831c https://git.kernel.org/stable/c/7985d73961bbb4e726c1be7b9cd26becc7be8325 https://git.kernel.org/stable/c/16edf51f33f52dff70ed455bc40a6cc443c04664 https://git.kernel.org/stable/c/8f7a3894e58e6f5d5815533cfde60e3838947941 https://git.kernel.org/stable/c/fe9f801355f0b47668419f30f1fac1cf4539e736 •

CVSS: 5.5EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: stmmac: Clear variable when destroying workqueue Currently when suspending driver and stopping workqueue it is checked whether workqueue is not NULL and if so, it is destroyed. Function destroy_workqueue() does drain queue and does clear variable, but it does not set workqueue variable to NULL. This can cause kernel/module panic if code attempts to clear workqueue that was not initialized. This scenario is possible when resuming suspended driver in stmmac_resume(), because there is no handling for failed stmmac_hw_setup(), which can fail and return if DMA engine has failed to initialize, and workqueue is initialized after DMA engine. Should DMA engine fail to initialize, resume will proceed normally, but interface won't work and TX queue will eventually timeout, causing 'Reset adapter' error. This then does destroy workqueue during reset process. And since workqueue is initialized after DMA engine and can be skipped, it will cause kernel/module panic. To secure against this possible crash, set workqueue variable to NULL when destroying workqueue. Log/backtrace from crash goes as follows: [88.031977]------------[ cut here ]------------ [88.031985]NETDEV WATCHDOG: eth0 (sxgmac): transmit queue 1 timed out [88.032017]WARNING: CPU: 0 PID: 0 at net/sched/sch_generic.c:477 dev_watchdog+0x390/0x398 <Skipping backtrace for watchdog timeout> [88.032251]---[ end trace e70de432e4d5c2c0 ]--- [88.032282]sxgmac 16d88000.ethernet eth0: Reset adapter. [88.036359]------------[ cut here ]------------ [88.036519]Call trace: [88.036523] flush_workqueue+0x3e4/0x430 [88.036528] drain_workqueue+0xc4/0x160 [88.036533] destroy_workqueue+0x40/0x270 [88.036537] stmmac_fpe_stop_wq+0x4c/0x70 [88.036541] stmmac_release+0x278/0x280 [88.036546] __dev_close_many+0xcc/0x158 [88.036551] dev_close_many+0xbc/0x190 [88.036555] dev_close.part.0+0x70/0xc0 [88.036560] dev_close+0x24/0x30 [88.036564] stmmac_service_task+0x110/0x140 [88.036569] process_one_work+0x1d8/0x4a0 [88.036573] worker_thread+0x54/0x408 [88.036578] kthread+0x164/0x170 [88.036583] ret_from_fork+0x10/0x20 [88.036588]---[ end trace e70de432e4d5c2c1 ]--- [88.036597]Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: stmmac: Borrar variable al destruir la cola de trabajo Actualmente, al suspender el controlador y detener la cola de trabajo, se verifica si la cola de trabajo no es NULL y, de ser así, se destruye. La función destroy_workqueue() drena la cola y borra la variable, pero no establece la variable de la cola de trabajo en NULL. Esto puede causar pánico en el núcleo/módulo si el código intenta borrar la cola de trabajo que no se inicializó. Este escenario es posible al reanudar el controlador suspendido en stmmac_resume(), porque no hay control para stmmac_hw_setup() fallido, que puede fallar y regresar si el motor DMA no se pudo inicializar y la cola de trabajo se inicializa después del motor DMA. • https://git.kernel.org/stable/c/5a5586112b929546e16029261a987c9197bfdfa2 https://git.kernel.org/stable/c/8e99556301172465c8fe33c7f78c39a3d4ce8462 https://git.kernel.org/stable/c/17ccd9798fe0beda3db212cfa3ebe373f605cbd6 https://git.kernel.org/stable/c/699b103e48ce32d03fc86c35b37ee8ae4288c7e3 https://git.kernel.org/stable/c/f72cf22dccc94038cbbaa1029cb575bf52e5cbc8 https://git.kernel.org/stable/c/8af411bbba1f457c33734795f024d0ef26d0963f https://access.redhat.com/security/cve/CVE-2024-26802 https://bugzilla.redhat.com/show_bug.cgi?id=2273427 • CWE-416: Use After Free •