CVE-2024-26710 – powerpc/kasan: Limit KASAN thread size increase to 32KB
https://notcve.org/view.php?id=CVE-2024-26710
In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Limit KASAN thread size increase to 32KB KASAN is seen to increase stack usage, to the point that it was reported to lead to stack overflow on some 32-bit machines (see link). To avoid overflows the stack size was doubled for KASAN builds in commit 3e8635fb2e07 ("powerpc/kasan: Force thread size increase with KASAN"). However with a 32KB stack size to begin with, the doubling leads to a 64KB stack, which causes build errors: arch/powerpc/kernel/switch.S:249: Error: operand out of range (0x000000000000fe50 is not between 0xffffffffffff8000 and 0x0000000000007fff) Although the asm could be reworked, in practice a 32KB stack seems sufficient even for KASAN builds - the additional usage seems to be in the 2-3KB range for a 64-bit KASAN build. So only increase the stack for KASAN if the stack size is < 32KB. En el kernel de Linux, se resolvió la siguiente vulnerabilidad: powerpc/kasan: limitar el aumento del tamaño del subproceso KASAN a 32 KB. Se considera que KASAN aumenta el uso de la pila, hasta el punto de que se informó que provoca un desbordamiento de la pila en algunas máquinas de 32 bits ( ver enlace). Para evitar desbordamientos, el tamaño de la pila se duplicó para las compilaciones de KASAN en el commit 3e8635fb2e07 ("powerpc/kasan: Forzar el aumento del tamaño del subproceso con KASAN"). Sin embargo, con un tamaño de pila de 32 KB para empezar, la duplicación conduce a una pila de 64 KB, lo que provoca errores de compilación: arch/powerpc/kernel/switch.S:249: Error: operando fuera de rango (0x000000000000fe50 no está entre 0xffffffffffff8000 y 0x00000000000007fff) Aunque el conjunto podría modificarse, en la práctica una pila de 32 KB parece suficiente incluso para compilaciones KASAN; el uso adicional parece estar en el rango de 2 a 3 KB para una compilación KASAN de 64 bits. • https://git.kernel.org/stable/c/9ccf64e763aca088b0d25c1274af42b1a6a45135 https://git.kernel.org/stable/c/b38014874530d3776de75679315e8c1fe04aa89b https://git.kernel.org/stable/c/58f396513cb1fa4ef91838c78698d458100cc27c https://git.kernel.org/stable/c/f9a4c401bf4c5af3437ad221c0a5880a518068d4 https://git.kernel.org/stable/c/4297217bcf1f0948a19c2bacc6b68d92e7778ad9 https://git.kernel.org/stable/c/4cc31fa07445879a13750cb061bb8c2654975fcb https://git.kernel.org/stable/c/b29b16bd836a838b7690f80e37f8376414c74cbe https://git.kernel.org/stable/c/f1acb109505d983779bbb7e20a1ee6244 •
CVE-2024-26708 – mptcp: really cope with fastopen race
https://notcve.org/view.php?id=CVE-2024-26708
In the Linux kernel, the following vulnerability has been resolved: mptcp: really cope with fastopen race Fastopen and PM-trigger subflow shutdown can race, as reported by syzkaller. In my first attempt to close such race, I missed the fact that the subflow status can change again before the subflow_state_change callback is invoked. Address the issue additionally copying with all the states directly reachable from TCP_FIN_WAIT1. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: mptcp: realmente se adapta a la ejecución fastopen. El cierre del subflujo Fastopen y PM-trigger puede correr, según lo informado por syzkaller. En mi primer intento de cerrar dicha ejecución, me perdí el hecho de que el estado del subflujo puede cambiar nuevamente antes de que se invoque la devolución de llamada subflow_state_change. Solucione el problema copiando adicionalmente todos los estados a los que se puede acceder directamente desde TCP_FIN_WAIT1. • https://git.kernel.org/stable/c/1e777f39b4d75e599a3aac8e0f67d739474f198c https://git.kernel.org/stable/c/4bfe217e075d04e63c092df9d40c608e598c2ef2 https://git.kernel.org/stable/c/e158fb9679d15a2317ec13b4f6301bd26265df2f https://git.kernel.org/stable/c/337cebbd850f94147cee05252778f8f78b8c337f •
CVE-2024-26707 – net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame()
https://notcve.org/view.php?id=CVE-2024-26707
In the Linux kernel, the following vulnerability has been resolved: net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame() Syzkaller reported [1] hitting a warning after failing to allocate resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will not help much in this case, it might be prudent to switch to netdev_warn_once(). At the very least it will suppress syzkaller reports such as [1]. Just in case, use netdev_warn_once() in send_prp_supervision_frame() for similar reasons. [1] HSR: Could not send supervision frame WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294 RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294 ... Call Trace: <IRQ> hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382 call_timer_fn+0x193/0x590 kernel/time/timer.c:1700 expire_timers kernel/time/timer.c:1751 [inline] __run_timers+0x764/0xb20 kernel/time/timer.c:2022 run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035 __do_softirq+0x21a/0x8de kernel/softirq.c:553 invoke_softirq kernel/softirq.c:427 [inline] __irq_exit_rcu kernel/softirq.c:632 [inline] irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644 sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649 ... This issue is also found in older kernels (at least up to 5.10). En el kernel de Linux, se resolvió la siguiente vulnerabilidad: net: hsr: eliminar WARN_ONCE() en send_hsr_supervision_frame() Syzkaller informó [1] que apareció una advertencia después de no poder asignar recursos para skb en hsr_init_skb(). Dado que una llamada WARN_ONCE() no ayudará mucho en este caso, podría ser prudente cambiar a netdev_warn_once(). • https://git.kernel.org/stable/c/121c33b07b3127f501b366bc23d2a590e2f2b8ef https://git.kernel.org/stable/c/0d8011a878fdf96123bc0d6a12e2fe7ced5fddfb https://git.kernel.org/stable/c/de769423b2f053182a41317c4db5a927e90622a0 https://git.kernel.org/stable/c/56440799fc4621c279df16176f83a995d056023a https://git.kernel.org/stable/c/923dea2a7ea9e1ef5ac4031fba461c1cc92e32b8 https://git.kernel.org/stable/c/547545e50c913861219947ce490c68a1776b9b51 https://git.kernel.org/stable/c/37e8c97e539015637cb920d3e6f1e404f707a06e https://lists.debian.org/debian-lts-announce/2024/06/ •
CVE-2024-26706 – parisc: Fix random data corruption from exception handler
https://notcve.org/view.php?id=CVE-2024-26706
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix random data corruption from exception handler The current exception handler implementation, which assists when accessing user space memory, may exhibit random data corruption if the compiler decides to use a different register than the specified register %r29 (defined in ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another register, the fault handler will nevertheless store -EFAULT into %r29 and thus trash whatever this register is used for. Looking at the assembly I found that this happens sometimes in emulate_ldd(). To solve the issue, the easiest solution would be if it somehow is possible to tell the fault handler which register is used to hold the error code. Using %0 or %1 in the inline assembly is not posssible as it will show up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not convert to an integer. This patch takes another, better and more flexible approach: We extend the __ex_table (which is out of the execution path) by one 32-word. In this word we tell the compiler to insert the assembler instruction "or %r0,%r0,%reg", where %reg references the register which the compiler choosed for the error return code. In case of an access failure, the fault handler finds the __ex_table entry and can examine the opcode. The used register is encoded in the lowest 5 bits, and the fault handler can then store -EFAULT into this register. Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT config option any longer. • https://git.kernel.org/stable/c/23027309b099ffc4efca5477009a11dccbdae592 https://git.kernel.org/stable/c/fa69a8063f8b27f3c7434a0d4f464a76a62f24d2 https://git.kernel.org/stable/c/ce31d79aa1f13a2345791f84935281a2c194e003 https://git.kernel.org/stable/c/8b1d72395635af45410b66cc4c4ab37a12c4a831 •
CVE-2024-26705 – parisc: BTLB: Fix crash when setting up BTLB at CPU bringup
https://notcve.org/view.php?id=CVE-2024-26705
In the Linux kernel, the following vulnerability has been resolved: parisc: BTLB: Fix crash when setting up BTLB at CPU bringup When using hotplug and bringing up a 32-bit CPU, ask the firmware about the BTLB information to set up the static (block) TLB entries. For that write access to the static btlb_info struct is needed, but since it is marked __ro_after_init the kernel segfaults with missing write permissions. Fix the crash by dropping the __ro_after_init annotation. En el kernel de Linux, se ha resuelto la siguiente vulnerabilidad: parisc: BTLB: soluciona el problema al configurar BTLB al iniciar la CPU. Al usar hotplug y activar una CPU de 32 bits, solicite al firmware la información de BTLB para configurar la estática ( bloque) Entradas TLB. Para eso se necesita acceso de escritura a la estructura estática btlb_info, pero como está marcada como __ro_after_init, el kernel falla por defecto y faltan permisos de escritura. Solucione el problema eliminando la anotación __ro_after_init. • https://git.kernel.org/stable/c/e5ef93d02d6c9cc3a14e7348481c9e41a528caa1 https://git.kernel.org/stable/c/54944f45470af5965fb9c28cf962ec30f38a8f5b https://git.kernel.org/stable/c/aa52be55276614d33f22fbe7da36c40d6432d10b https://git.kernel.org/stable/c/913b9d443a0180cf0de3548f1ab3149378998486 •