Page 72 of 3864 results (0.009 seconds)

CVSS: -EPSS: 0%CPEs: 9EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: media: vivid: fix compose size exceed boundary syzkaller found a bug: BUG: unable to handle page fault for address: ffffc9000a3b1000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 100000067 P4D 100000067 PUD 10015f067 PMD 1121ca067 PTE 0 Oops: 0002 [#1] PREEMPT SMP CPU: 0 PID: 23489 Comm: vivid-000-vid-c Not tainted 6.1.0-rc1+ #512 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:memcpy_erms+0x6/0x10 [...] Call Trace: <TASK> ? tpg_fill_plane_buffer+0x856/0x15b0 vivid_fillbuff+0x8ac/0x1110 vivid_thread_vid_cap_tick+0x361/0xc90 vivid_thread_vid_cap+0x21a/0x3a0 kthread+0x143/0x180 ret_from_fork+0x1f/0x30 </TASK> This is because we forget to check boundary after adjust compose->height int V4L2_SEL_TGT_CROP case. Add v4l2_rect_map_inside() to fix this problem for this case. • https://git.kernel.org/stable/c/ef834f7836ec0502f49f20bbc42f1240577a9c83 https://git.kernel.org/stable/c/8c0ee15d9a102c732d0745566d254040085d5663 https://git.kernel.org/stable/c/5edc3604151919da8da0fb092b71d7dce07d848a https://git.kernel.org/stable/c/9c7fba9503b826f0c061d136f8f0c9f953ed18b9 https://git.kernel.org/stable/c/54f259906039dbfe46c550011409fa16f72370f6 https://git.kernel.org/stable/c/f9d19f3a044ca651b0be52a4bf951ffe74259b9f https://git.kernel.org/stable/c/ab54081a2843aefb837812fac5488cc8f1696142 https://git.kernel.org/stable/c/ccb5392c4fea0e7d9f7ab35567e839d74 •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: sch/netem: fix use after free in netem_dequeue If netem_dequeue() enqueues packet to inner qdisc and that qdisc returns __NET_XMIT_STOLEN. The packet is dropped but qdisc_tree_reduce_backlog() is not called to update the parent's q.qlen, leading to the similar use-after-free as Commit e04991a48dbaf382 ("netem: fix return value if duplicate enqueue fails") Commands to trigger KASAN UaF: ip link add type dummy ip link set lo up ip link set dummy0 up tc qdisc add dev lo parent root handle 1: drr tc filter add dev lo parent 1: basic classid 1:1 tc class add dev lo classid 1:1 drr tc qdisc add dev lo parent 1:1 handle 2: netem tc qdisc add dev lo parent 2: handle 3: drr tc filter add dev lo parent 3: basic classid 3:1 action mirred egress redirect dev dummy0 tc class add dev lo classid 3:1 drr ping -c1 -W0.01 localhost # Trigger bug tc class del dev lo classid 1:1 tc class add dev lo classid 1:1 drr ping -c1 -W0.01 localhost # UaF • https://git.kernel.org/stable/c/50612537e9ab29693122fab20fc1eed235054ffe https://git.kernel.org/stable/c/f0bddb4de043399f16d1969dad5ee5b984a64e7b https://git.kernel.org/stable/c/295ad5afd9efc5f67b86c64fce28fb94e26dc4c9 https://git.kernel.org/stable/c/98c75d76187944296068d685dfd8a1e9fd8c4fdc https://git.kernel.org/stable/c/14f91ab8d391f249b845916820a56f42cf747241 https://git.kernel.org/stable/c/db2c235682913a63054e741fe4e19645fdf2d68e https://git.kernel.org/stable/c/dde33a9d0b80aae0c69594d1f462515d7ff1cb3d https://git.kernel.org/stable/c/32008ab989ddcff1a485fa2b4906234c2 •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix checks for huge PMDs Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2. The pmd_trans_huge() code in mfill_atomic() is wrong in three different ways depending on kernel version: 1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit the right two race windows) - I've tested this in a kernel build with some extra mdelay() calls. See the commit message for a description of the race scenario. On older kernels (before 6.5), I think the same bug can even theoretically lead to accessing transhuge page contents as a page table if you hit the right 5 narrow race windows (I haven't tested this case). 2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for detecting PMDs that don't point to page tables. On older kernels (before 6.5), you'd just have to win a single fairly wide race to hit this. I've tested this on 6.1 stable by racing migration (with a mdelay() patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86 VM, that causes a kernel oops in ptlock_ptr(). 3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed to yank page tables out from under us (though I haven't tested that), so I think the BUG_ON() checks in mfill_atomic() are just wrong. I decided to write two separate fixes for these (one fix for bugs 1+2, one fix for bug 3), so that the first fix can be backported to kernels affected by bugs 1+2. This patch (of 2): This fixes two issues. I discovered that the following race can occur: mfill_atomic other thread ============ ============ <zap PMD> pmdp_get_lockless() [reads none pmd] <bail if trans_huge> <if none:> <pagefault creates transhuge zeropage> __pte_alloc [no-op] <zap PMD> <bail if pmd_trans_huge(*dst_pmd)> BUG_ON(pmd_none(*dst_pmd)) I have experimentally verified this in a kernel with extra mdelay() calls; the BUG_ON(pmd_none(*dst_pmd)) triggers. On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow pte_offset_map[_lock]() to fail"), this can't lead to anything worse than a BUG_ON(), since the page table access helpers are actually designed to deal with page tables concurrently disappearing; but on older kernels (<=6.4), I think we could probably theoretically race past the two BUG_ON() checks and end up treating a hugepage as a page table. The second issue is that, as Qi Zheng pointed out, there are other types of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs (in particular, migration PMDs). On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a PMD that contains a migration entry (which just requires winning a single, fairly wide race), it will pass the PMD to pte_offset_map_lock(), which assumes that the PMD points to a page table. Breakage follows: First, the kernel tries to take the PTE lock (which will crash or maybe worse if there is no "struct page" for the address bits in the migration entry PMD - I think at least on X86 there usually is no corresponding "struct page" thanks to the PTE inversion mitigation, amd64 looks different). If that didn't crash, the kernel would next try to write a PTE into what it wrongly thinks is a page table. As part of fixing these issues, get rid of the check for pmd_trans_huge() before __pte_alloc() - that's redundant, we're going to have to check for that after the __pte_alloc() anyway. Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels. • https://git.kernel.org/stable/c/c1a4de99fada21e2e9251e52cbb51eff5aadc757 https://git.kernel.org/stable/c/3c6b4bcf37845c9359aed926324bed66bdd2448d https://git.kernel.org/stable/c/98cc18b1b71e23fe81a5194ed432b20c2d81a01a https://git.kernel.org/stable/c/71c186efc1b2cf1aeabfeff3b9bd5ac4c5ac14d8 •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: ila: call nf_unregister_net_hooks() sooner syzbot found an use-after-free Read in ila_nf_input [1] Issue here is that ila_xlat_exit_net() frees the rhashtable, then call nf_unregister_net_hooks(). It should be done in the reverse way, with a synchronize_rcu(). This is a good match for a pre_exit() method. [1] BUG: KASAN: use-after-free in rht_key_hashfn include/linux/rhashtable.h:159 [inline] BUG: KASAN: use-after-free in __rhashtable_lookup include/linux/rhashtable.h:604 [inline] BUG: KASAN: use-after-free in rhashtable_lookup include/linux/rhashtable.h:646 [inline] BUG: KASAN: use-after-free in rhashtable_lookup_fast+0x77a/0x9b0 include/linux/rhashtable.h:672 Read of size 4 at addr ffff888064620008 by task ksoftirqd/0/16 CPU: 0 UID: 0 PID: 16 Comm: ksoftirqd/0 Not tainted 6.11.0-rc4-syzkaller-00238-g2ad6d23f465a #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 rht_key_hashfn include/linux/rhashtable.h:159 [inline] __rhashtable_lookup include/linux/rhashtable.h:604 [inline] rhashtable_lookup include/linux/rhashtable.h:646 [inline] rhashtable_lookup_fast+0x77a/0x9b0 include/linux/rhashtable.h:672 ila_lookup_wildcards net/ipv6/ila/ila_xlat.c:132 [inline] ila_xlat_addr net/ipv6/ila/ila_xlat.c:652 [inline] ila_nf_input+0x1fe/0x3c0 net/ipv6/ila/ila_xlat.c:190 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] NF_HOOK+0x29e/0x450 include/linux/netfilter.h:312 __netif_receive_skb_one_core net/core/dev.c:5661 [inline] __netif_receive_skb+0x1ea/0x650 net/core/dev.c:5775 process_backlog+0x662/0x15b0 net/core/dev.c:6108 __napi_poll+0xcb/0x490 net/core/dev.c:6772 napi_poll net/core/dev.c:6841 [inline] net_rx_action+0x89b/0x1240 net/core/dev.c:6963 handle_softirqs+0x2c4/0x970 kernel/softirq.c:554 run_ksoftirqd+0xca/0x130 kernel/softirq.c:928 smpboot_thread_fn+0x544/0xa30 kernel/smpboot.c:164 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x64620 flags: 0xfff00000000000(node=0|zone=1|lastcpupid=0x7ff) page_type: 0xbfffffff(buddy) raw: 00fff00000000000 ffffea0000959608 ffffea00019d9408 0000000000000000 raw: 0000000000000000 0000000000000003 00000000bfffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as freed page last allocated via order 3, migratetype Unmovable, gfp_mask 0x52dc0(GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_ZERO), pid 5242, tgid 5242 (syz-executor), ts 73611328570, free_ts 618981657187 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1493 prep_new_page mm/page_alloc.c:1501 [inline] get_page_from_freelist+0x2e4c/0x2f10 mm/page_alloc.c:3439 __alloc_pages_noprof+0x256/0x6c0 mm/page_alloc.c:4695 __alloc_pages_node_noprof include/linux/gfp.h:269 [inline] alloc_pages_node_noprof include/linux/gfp.h:296 [inline] ___kmalloc_large_node+0x8b/0x1d0 mm/slub.c:4103 __kmalloc_large_node_noprof+0x1a/0x80 mm/slub.c:4130 __do_kmalloc_node mm/slub.c:4146 [inline] __kmalloc_node_noprof+0x2d2/0x440 mm/slub.c:4164 __kvmalloc_node_noprof+0x72/0x190 mm/util.c:650 bucket_table_alloc lib/rhashtable.c:186 [inline] rhashtable_init_noprof+0x534/0xa60 lib/rhashtable.c:1071 ila_xlat_init_net+0xa0/0x110 net/ipv6/ila/ila_xlat.c:613 ops_ini ---truncated--- • https://git.kernel.org/stable/c/7f00feaf107645d95a6d87e99b4d141ac0a08efd https://git.kernel.org/stable/c/43d34110882b97ba1ec66cc8234b18983efb9abf https://git.kernel.org/stable/c/dcaf4e2216824839d26727a15b638c6a677bd9fc https://git.kernel.org/stable/c/93ee345ba349922834e6a9d1dadabaedcc12dce6 https://git.kernel.org/stable/c/bda4d84ac0d5421b346faee720011f58bdb99673 https://git.kernel.org/stable/c/925c18a7cff93d8a4320d652351294ff7d0ac93c https://git.kernel.org/stable/c/18a5a16940464b301ea91bf5da3a324aedb347b2 https://git.kernel.org/stable/c/47abd8adddbc0aecb8f231269ef659148 •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix missing cleanup on rollforward recovery error In an error injection test of a routine for mount-time recovery, KASAN found a use-after-free bug. It turned out that if data recovery was performed using partial logs created by dsync writes, but an error occurred before starting the log writer to create a recovered checkpoint, the inodes whose data had been recovered were left in the ns_dirty_files list of the nilfs object and were not freed. Fix this issue by cleaning up inodes that have read the recovery data if the recovery routine fails midway before the log writer starts. • https://git.kernel.org/stable/c/0f3e1c7f23f8a6f8224fa1d275381f6d9279ad4b https://git.kernel.org/stable/c/35a9a7a7d94662146396199b0cfd95f9517cdd14 https://git.kernel.org/stable/c/da02f9eb333333b2e4f25d2a14967cff785ac82e https://git.kernel.org/stable/c/07e4dc2fe000ab008bcfe90be4324ef56b5b4355 https://git.kernel.org/stable/c/8e2d1e9d93c4ec51354229361ac3373058529ec4 https://git.kernel.org/stable/c/ca92c4bff2833cb30d493b935168d6cccd5c805d https://git.kernel.org/stable/c/9d8c3a585d564d776ee60d4aabec59b404be7403 https://git.kernel.org/stable/c/1cf1f7e8cd47244fa947d357ef1f642d9 •