Page 74 of 429 results (0.010 seconds)

CVSS: 5.5EPSS: 0%CPEs: 4EXPL: 1

TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. • https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g • CWE-754: Improper Check for Unusual or Exceptional Conditions •

CVSS: 7.8EPSS: 0%CPEs: 4EXPL: 1

TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. • https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87 https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669 • CWE-131: Incorrect Calculation of Buffer Size CWE-787: Out-of-bounds Write •

CVSS: 7.8EPSS: 0%CPEs: 4EXPL: 1

TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. • https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x • CWE-131: Incorrect Calculation of Buffer Size CWE-787: Out-of-bounds Write •

CVSS: 7.8EPSS: 0%CPEs: 4EXPL: 1

TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. • https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694 https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq • CWE-131: Incorrect Calculation of Buffer Size CWE-787: Out-of-bounds Write •

CVSS: 5.5EPSS: 0%CPEs: 4EXPL: 1

TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. • https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96 https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp • CWE-369: Divide By Zero •