Page 74 of 6859 results (0.006 seconds)

CVSS: -EPSS: 0%CPEs: 9EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: media: venus: fix use after free bug in venus_remove due to race condition in venus_probe, core->work is bound with venus_sys_error_handler, which is used to handle error. The code use core->sys_err_done to make sync work. The core->work is started in venus_event_notify. If we call venus_remove, there might be an unfished work. The possible sequence is as follows: CPU0 CPU1 |venus_sys_error_handler venus_remove | hfi_destroy | venus_hfi_destroy | kfree(hdev); | |hfi_reinit |venus_hfi_queues_reinit |//use hdev Fix it by canceling the work in venus_remove. • https://git.kernel.org/stable/c/af2c3834c8ca7cc65d15592ac671933df8848115 https://git.kernel.org/stable/c/5098b9e6377577fe13d03e1d8914930f014a3314 https://git.kernel.org/stable/c/63bbe26471ebdcc3c20bb4cc3950d666279ad658 https://git.kernel.org/stable/c/60b6968341a6dd5353554f3e72db554693a128a5 https://git.kernel.org/stable/c/bf6be32e2d39f6301ff1831e249d32a8744ab28a https://git.kernel.org/stable/c/2a541fcc0bd2b05a458e9613376df1289ec11621 https://git.kernel.org/stable/c/b0686aedc5f1343442d044bd64eeac7e7a391f4e https://git.kernel.org/stable/c/d925e9f7fb5a2dbefd1a73fc01061f38c •

CVSS: -EPSS: 0%CPEs: 5EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: gso: fix udp gso fraglist segmentation after pull from frag_list Detect gso fraglist skbs with corrupted geometry (see below) and pass these to skb_segment instead of skb_segment_list, as the first can segment them correctly. Valid SKB_GSO_FRAGLIST skbs - consist of two or more segments - the head_skb holds the protocol headers plus first gso_size - one or more frag_list skbs hold exactly one segment - all but the last must be gso_size Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can modify these skbs, breaking these invariants. In extreme cases they pull all data into skb linear. For UDP, this causes a NULL ptr deref in __udpv4_gso_segment_list_csum at udp_hdr(seg->next)->dest. Detect invalid geometry due to pull, by checking head_skb size. Don't just drop, as this may blackhole a destination. Convert to be able to pass to regular skb_segment. • https://git.kernel.org/stable/c/9fd1ff5d2ac7181844735806b0a703c942365291 https://git.kernel.org/stable/c/080e6c9a3908de193a48f646c5ce1bfb15676ffc https://git.kernel.org/stable/c/af3122f5fdc0d00581d6e598a668df6bf54c9daa https://git.kernel.org/stable/c/33e28acf42ee863f332a958bfc2f1a284a3659df https://git.kernel.org/stable/c/3cd00d2e3655fad3bda96dc1ebf17b6495f86fea https://git.kernel.org/stable/c/a1e40ac5b5e9077fe1f7ae0eb88034db0f9ae1ab •

CVSS: -EPSS: 0%CPEs: 8EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Fix zero-division error when disabling tc cbs The commit b8c43360f6e4 ("net: stmmac: No need to calculate speed divider when offload is disabled") allows the "port_transmit_rate_kbps" to be set to a value of 0, which is then passed to the "div_s64" function when tc-cbs is disabled. This leads to a zero-division error. When tc-cbs is disabled, the idleslope, sendslope, and credit values the credit values are not required to be configured. Therefore, adding a return statement after setting the txQ mode to DCB when tc-cbs is disabled would prevent a zero-division error. • https://git.kernel.org/stable/c/b4bca4722fda928810d024350493990de39f1e40 https://git.kernel.org/stable/c/2145583e5995598f50d66f8710c86bb1e910ac46 https://git.kernel.org/stable/c/521d42a1c24d638241220d4b9fa7e7a0ed02b88e https://git.kernel.org/stable/c/a71b686418ee6bcb6d6365f7f6d838d9874d9c64 https://git.kernel.org/stable/c/b8c43360f6e424131fa81d3ba8792ad8ff25a09e https://git.kernel.org/stable/c/f01782804147a8c21f481b3342c83422c041d2c0 https://git.kernel.org/stable/c/e33fe25b1efe4f2e6a5858786dbc82ae4c44ed4c https://git.kernel.org/stable/c/b0da9504a528f05f97d926b4db74ff219 •

CVSS: -EPSS: 0%CPEs: 9EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: uprobes: fix kernel info leak via "[uprobes]" vma xol_add_vma() maps the uninitialized page allocated by __create_xol_area() into userspace. On some architectures (x86) this memory is readable even without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ, although this doesn't really matter, debugger can read this memory anyway. • https://git.kernel.org/stable/c/d4b3b6384f98f8692ad0209891ccdbc7e78bbefe https://git.kernel.org/stable/c/f31f92107e5a8ecc8902705122c594e979a351fe https://git.kernel.org/stable/c/fe5e9182d3e227476642ae2b312e2356c4d326a3 https://git.kernel.org/stable/c/f561b48d633ac2e7d0d667020fc634a96ade33a0 https://git.kernel.org/stable/c/21cb47db1ec9765f91304763a24565ddc22d2492 https://git.kernel.org/stable/c/24141df5a8615790950deedd926a44ddf1dfd6d8 https://git.kernel.org/stable/c/5b981d8335e18aef7908a068529a3287258ff6d8 https://git.kernel.org/stable/c/2aa45f43709ba2082917bd2973d026870 •

CVSS: -EPSS: 0%CPEs: 3EXPL: 0

In the Linux kernel, the following vulnerability has been resolved: NFSD: Limit the number of concurrent async COPY operations Nothing appears to limit the number of concurrent async COPY operations that clients can start. In addition, AFAICT each async COPY can copy an unlimited number of 4MB chunks, so can run for a long time. Thus IMO async COPY can become a DoS vector. Add a restriction mechanism that bounds the number of concurrent background COPY operations. Start simple and try to be fair -- this patch implements a per-namespace limit. An async COPY request that occurs while this limit is exceeded gets NFS4ERR_DELAY. The requesting client can choose to send the request again after a delay or fall back to a traditional read/write style copy. If there is need to make the mechanism more sophisticated, we can visit that in future patches. • https://git.kernel.org/stable/c/b4e21431a0db4854b5023cd5af001be557e6c3db https://git.kernel.org/stable/c/6a488ad7745b8f64625c6d3a24ce7e448e83f11b https://git.kernel.org/stable/c/aadc3bbea163b6caaaebfdd2b6c4667fbc726752 •