CVE-2024-43882 – exec: Fix ToCToU between perm check and set-uid/gid usage
https://notcve.org/view.php?id=CVE-2024-43882
In the Linux kernel, the following vulnerability has been resolved: exec: Fix ToCToU between perm check and set-uid/gid usage When opening a file for exec via do_filp_open(), permission checking is done against the file's metadata at that moment, and on success, a file pointer is passed back. Much later in the execve() code path, the file metadata (specifically mode, uid, and gid) is used to determine if/how to set the uid and gid. However, those values may have changed since the permissions check, meaning the execution may gain unintended privileges. For example, if a file could change permissions from executable and not set-id: ---------x 1 root root 16048 Aug 7 13:16 target to set-id and non-executable: ---S------ 1 root root 16048 Aug 7 13:16 target it is possible to gain root privileges when execution should have been disallowed. While this race condition is rare in real-world scenarios, it has been observed (and proven exploitable) when package managers are updating the setuid bits of installed programs. Such files start with being world-executable but then are adjusted to be group-exec with a set-uid bit. For example, "chmod o-x,u+s target" makes "target" executable only by uid "root" and gid "cdrom", while also becoming setuid-root: -rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target becomes: -rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target But racing the chmod means users without group "cdrom" membership can get the permission to execute "target" just before the chmod, and when the chmod finishes, the exec reaches brpm_fill_uid(), and performs the setuid to root, violating the expressed authorization of "only cdrom group members can setuid to root". Re-check that we still have execute permissions in case the metadata has changed. • https://git.kernel.org/stable/c/d5c3c7e26275a2d83b894d30f7582a42853a958f https://git.kernel.org/stable/c/368f6985d46657b8b466a421dddcacd4051f7ada https://git.kernel.org/stable/c/15469d46ba34559bfe7e3de6659115778c624759 https://git.kernel.org/stable/c/9b424c5d4130d56312e2a3be17efb0928fec4d64 https://git.kernel.org/stable/c/f6cfc6bcfd5e1cf76115b6450516ea4c99897ae1 https://git.kernel.org/stable/c/d2a2a4714d80d09b0f8eb6438ab4224690b7121e https://git.kernel.org/stable/c/90dfbba89ad4f0d9c9744ecbb1adac4aa2ff4f3e https://git.kernel.org/stable/c/f50733b45d865f91db90919f8311e2127 • CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition •
CVE-2024-43867 – drm/nouveau: prime: fix refcount underflow
https://notcve.org/view.php?id=CVE-2024-43867
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: prime: fix refcount underflow Calling nouveau_bo_ref() on a nouveau_bo without initializing it (and hence the backing ttm_bo) leads to a refcount underflow. Instead of calling nouveau_bo_ref() in the unwind path of drm_gem_object_init(), clean things up manually. (cherry picked from commit 1b93f3e89d03cfc576636e195466a0d728ad8de5) • https://git.kernel.org/stable/c/ab9ccb96a6e6f95bcde6b8b2a524370efdbfdcd6 https://git.kernel.org/stable/c/3bcb8bba72ce89667fa863054956267c450c47ef https://git.kernel.org/stable/c/906372e753c5027a1dc88743843b6aa2ad1aaecf https://git.kernel.org/stable/c/16998763c62bb465ebc409d0373b9cdcef1a61a6 https://git.kernel.org/stable/c/ebebba4d357b6c67f96776a48ddbaf0060fa4c10 https://git.kernel.org/stable/c/f23cd66933fe76b84d8e282e5606b4d99068c320 https://git.kernel.org/stable/c/2a1b327d57a8ac080977633a18999f032d7e9e3f https://git.kernel.org/stable/c/a9bf3efc33f1fbf88787a277f73494592 •
CVE-2024-43858 – jfs: Fix array-index-out-of-bounds in diFree
https://notcve.org/view.php?id=CVE-2024-43858
In the Linux kernel, the following vulnerability has been resolved: jfs: Fix array-index-out-of-bounds in diFree • https://git.kernel.org/stable/c/1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 https://git.kernel.org/stable/c/55b732c8b09b41148eaab2fa8e31b0af47671e00 https://git.kernel.org/stable/c/9b3a4345957f5372041bc4f59de322f62653e862 https://git.kernel.org/stable/c/538a27c8048f081a5ddd286f886eb986fbbc7f80 https://git.kernel.org/stable/c/63f7fdf733add82f126ea00e2e48f6eba15ac4b9 https://git.kernel.org/stable/c/8d8f9a477de0d7962342eedf2a599215b7c63d28 https://git.kernel.org/stable/c/ff14eadc278663cac69d57d3ca7fb2f394e1f8a7 https://git.kernel.org/stable/c/6aa6892a90a5a7fabffe5692ab9f06a7a •
CVE-2024-43856 – dma: fix call order in dmam_free_coherent
https://notcve.org/view.php?id=CVE-2024-43856
In the Linux kernel, the following vulnerability has been resolved: dma: fix call order in dmam_free_coherent dmam_free_coherent() frees a DMA allocation, which makes the freed vaddr available for reuse, then calls devres_destroy() to remove and free the data structure used to track the DMA allocation. Between the two calls, it is possible for a concurrent task to make an allocation with the same vaddr and add it to the devres list. If this happens, there will be two entries in the devres list with the same vaddr and devres_destroy() can free the wrong entry, triggering the WARN_ON() in dmam_match. Fix by destroying the devres entry before freeing the DMA allocation. kokonut //net/encryption http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 • https://git.kernel.org/stable/c/9ac7849e35f705830f7b016ff272b0ff1f7ff759 https://git.kernel.org/stable/c/fe2d246080f035e0af5793cb79067ba125e4fb63 https://git.kernel.org/stable/c/2f7bbdc744f2e7051d1cb47c8e082162df1923c9 https://git.kernel.org/stable/c/257193083e8f43907e99ea633820fc2b3bcd24c7 https://git.kernel.org/stable/c/87b34c8c94e29fa01d744e5147697f592998d954 https://git.kernel.org/stable/c/f993a4baf6b622232e4c190d34c220179e5d61eb https://git.kernel.org/stable/c/1fe97f68fce1ba24bf823bfb0eb0956003473130 https://git.kernel.org/stable/c/22094f5f52e7bc16c5bf9613365049383 • CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') •
CVE-2024-43854 – block: initialize integrity buffer to zero before writing it to media
https://notcve.org/view.php?id=CVE-2024-43854
In the Linux kernel, the following vulnerability has been resolved: block: initialize integrity buffer to zero before writing it to media Metadata added by bio_integrity_prep is using plain kmalloc, which leads to random kernel memory being written media. For PI metadata this is limited to the app tag that isn't used by kernel generated metadata, but for non-PI metadata the entire buffer leaks kernel memory. Fix this by adding the __GFP_ZERO flag to allocations for writes. • https://git.kernel.org/stable/c/7ba1ba12eeef0aa7113beb16410ef8b7c748e18b https://git.kernel.org/stable/c/9f4af4cf08f9a0329ade3d938f55d2220c40d0a6 https://git.kernel.org/stable/c/129f95948a96105c1fad8e612c9097763e88ac5f https://git.kernel.org/stable/c/3fd11fe4f20756b4c0847f755a64cd96f8c6a005 https://git.kernel.org/stable/c/cf6b45ea7a8df0f61bded1dc4a8561ac6ad143d2 https://git.kernel.org/stable/c/d418313bd8f55c079a7da12651951b489a638ac1 https://git.kernel.org/stable/c/23a19655fb56f241e592041156dfb1c6d04da644 https://git.kernel.org/stable/c/ebc0e91ba76dc6544fff9f5b66408b198 • CWE-401: Missing Release of Memory after Effective Lifetime •