CVE-2019-1549 – Fork Protection
https://notcve.org/view.php?id=CVE-2019-1549
OpenSSL 1.1.1 introduced a rewritten random number generator (RNG). This was intended to include protection in the event of a fork() system call in order to ensure that the parent and child processes did not share the same RNG state. However this protection was not being used in the default case. A partial mitigation for this issue is that the output from a high precision timer is mixed into the RNG state so the likelihood of a parent and child process sharing state is significantly reduced. If an application already calls OPENSSL_init_crypto() explicitly using OPENSSL_INIT_ATFORK then this problem does not occur at all. • https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=1b0fe00e2704b5e20334a16d3c9099d1ba2ef1be https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/GY6SNRJP2S7Y42GIIDO3HXPNMDYN2U3A https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/ZN4VVQJ3JDCHGIHV4Y2YTXBYQZ6PWQ7E https://seclists.org/bugtraq/2019/Oct/1 https://security.netapp.com/advisory/ntap-20190919-0002 https://support.f5.com/csp/article/K44070243 https://support.f5.com/csp/article • CWE-200: Exposure of Sensitive Information to an Unauthorized Actor CWE-330: Use of Insufficiently Random Values •
CVE-2019-1552 – Windows builds with insecure path defaults
https://notcve.org/view.php?id=CVE-2019-1552
OpenSSL has internal defaults for a directory tree where it can find a configuration file as well as certificates used for verification in TLS. This directory is most commonly referred to as OPENSSLDIR, and is configurable with the --prefix / --openssldir configuration options. For OpenSSL versions 1.1.0 and 1.1.1, the mingw configuration targets assume that resulting programs and libraries are installed in a Unix-like environment and the default prefix for program installation as well as for OPENSSLDIR should be '/usr/local'. However, mingw programs are Windows programs, and as such, find themselves looking at sub-directories of 'C:/usr/local', which may be world writable, which enables untrusted users to modify OpenSSL's default configuration, insert CA certificates, modify (or even replace) existing engine modules, etc. For OpenSSL 1.0.2, '/usr/local/ssl' is used as default for OPENSSLDIR on all Unix and Windows targets, including Visual C builds. • https://cert-portal.siemens.com/productcert/pdf/ssa-412672.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=54aa9d51b09d67e90db443f682cface795f5af9e https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=b15a19c148384e73338aa7c5b12652138e35ed28 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=d333ebaf9c77332754a9d5e111e2f53e1de54fdd https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=e32bc855a81a2d48d215c506bdeb4f598045f7e9 https://kc.mcafee.com/corporate/index? • CWE-295: Improper Certificate Validation •
CVE-2019-1543 – ChaCha20-Poly1305 with long nonces
https://notcve.org/view.php?id=CVE-2019-1543
ChaCha20-Poly1305 is an AEAD cipher, and requires a unique nonce input for every encryption operation. RFC 7539 specifies that the nonce value (IV) should be 96 bits (12 bytes). OpenSSL allows a variable nonce length and front pads the nonce with 0 bytes if it is less than 12 bytes. However it also incorrectly allows a nonce to be set of up to 16 bytes. In this case only the last 12 bytes are significant and any additional leading bytes are ignored. • http://lists.opensuse.org/opensuse-security-announce/2019-07/msg00056.html https://access.redhat.com/errata/RHSA-2019:3700 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=ee22257b1418438ebaf54df98af4e24f494d1809 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=f426625b6ae9a7831010750490a5f0ad689c5ba3 https://kc.mcafee.com/corporate/index?page=content&id=SB10365 https://lists.fedoraproject.org/archives/list/package-announce%40lists.fedoraproject.org/message/Y3IVFGSERAZLNJCK35TEM2R4726XIH3Z https://lis • CWE-323: Reusing a Nonce, Key Pair in Encryption CWE-327: Use of a Broken or Risky Cryptographic Algorithm CWE-330: Use of Insufficiently Random Values •
CVE-2019-1559 – 0-byte record padding oracle
https://notcve.org/view.php?id=CVE-2019-1559
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). • http://lists.opensuse.org/opensuse-security-announce/2019-03/msg00041.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00019.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00046.html http://lists.opensuse.org/opensuse-security-announce/2019-04/msg00047.html http://lists.opensuse.org/opensuse-security-announce/2019-05/msg00049.html http://lists.opensuse.org/opensuse-security-announce/2019-06/msg00080.html http://www.securityfocus.com/bid/107174 https://access. • CWE-203: Observable Discrepancy CWE-325: Missing Cryptographic Step •
CVE-2019-0190
https://notcve.org/view.php?id=CVE-2019-0190
A bug exists in the way mod_ssl handled client renegotiations. A remote attacker could send a carefully crafted request that would cause mod_ssl to enter a loop leading to a denial of service. This bug can be only triggered with Apache HTTP Server version 2.4.37 when using OpenSSL version 1.1.1 or later, due to an interaction in changes to handling of renegotiation attempts. Existe un problema en la manera en la que mod_ssl gestionaba registros de cliente. Un atacante remoto podría enviar una petición especialmente manipulada que conduciría a que mod_ssl entre en un bucle, provocando una denegación de servicio (DoS). • http://www.securityfocus.com/bid/106743 https://httpd.apache.org/security/vulnerabilities_24.html https://lists.apache.org/thread.html/56c2e7cc9deb1c12a843d0dc251ea7fd3e7e80293cde02fcd65286ba%40%3Ccvs.httpd.apache.org%3E https://lists.apache.org/thread.html/84a3714f0878781f6ed84473d1a503d2cc382277e100450209231830%40%3Ccvs.httpd.apache.org%3E https://lists.apache.org/thread.html/r03ee478b3dda3e381fd6189366fa7af97c980d2f602846eef935277d%40%3Ccvs.httpd.apache.org%3E https://lists.apache.org/thread.html/r06f0d87ebb6d59ed8379633f36f72f5b1f79cadfda72ede0830b42cf%40%3Ccvs.httpd •