Page 6 of 268 results (0.009 seconds)

CVSS: 7.5EPSS: 0%CPEs: 4EXPL: 0

The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. • https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=63bcf189be73a9cc1264059bed6f57974be74a83 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=bbcf509bd046b34cca19c766bbddc31683d0858b https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4450 https://bugzilla.redhat.com/show_bug.cgi?id=2164494 • CWE-415: Double Free •

CVSS: 4.9EPSS: 0%CPEs: 1EXPL: 0

A read buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. The read buffer overrun might result in a crash which could lead to a denial of service attack. In theory it could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext) although we are not aware of any working exploit leading to memory contents disclosure as of the time of release of this advisory. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. A flaw was found in Open SSL. • https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=c927a3492698c254637da836762f9b1f86cffabc https://security.gentoo.org/glsa/202402-08 https://www.openssl.org/news/secadv/20230207.txt https://access.redhat.com/security/cve/CVE-2022-4203 https://bugzilla.redhat.com/show_bug.cgi?id=2164488 • CWE-125: Out-of-bounds Read •

CVSS: 7.5EPSS: 0%CPEs: 1EXPL: 0

If an X.509 certificate contains a malformed policy constraint and policy processing is enabled, then a write lock will be taken twice recursively. On some operating systems (most widely: Windows) this results in a denial of service when the affected process hangs. Policy processing being enabled on a publicly facing server is not considered to be a common setup. Policy processing is enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. Update (31 March 2023): The description of the policy processing enablement was corrected based on CVE-2023-0466. Si un certificado X.509 contiene una restricción de política con formato incorrecto y el procesamiento de políticas está habilitado, se aplicará un bloqueo de escritura dos veces de forma recursiva. En algunos sistemas operativos (más ampliamente: Windows), esto resulta en una Denegación de Servicio (DoS) cuando el proceso afectado se bloquea. • https://github.com/openssl/openssl/commit/7725e7bfe6f2ce8146b6552b44e0d226be7638e7 https://www.openssl.org/news/secadv/20221213.txt • CWE-667: Improper Locking •

CVSS: 7.5EPSS: 10%CPEs: 9EXPL: 4

A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. • https://github.com/colmmacc/CVE-2022-3602 https://github.com/eatscrayon/CVE-2022-3602-poc https://github.com/corelight/CVE-2022-3602 https://github.com/cybersecurityworks553/CVE-2022-3602-and-CVE-2022-3786 http://packetstormsecurity.com/files/169687/OpenSSL-Security-Advisory-20221101.html http://www.openwall.com/lists/oss-security/2022/11/01/15 http://www.openwall.com/lists/oss-security/2022/11/01/16 http://www.openwall.com/lists/oss-security/2022/11/01/17 http://www&# • CWE-121: Stack-based Buffer Overflow CWE-787: Out-of-bounds Write •

CVSS: 7.5EPSS: 0%CPEs: 6EXPL: 1

A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. • https://github.com/cybersecurityworks553/CVE-2022-3602-and-CVE-2022-3786 https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=c42165b5706e42f67ef8ef4c351a9a4c5d21639a https://www.openssl.org/news/secadv/20221101.txt https://access.redhat.com/security/cve/CVE-2022-3786 https://bugzilla.redhat.com/show_bug.cgi?id=2139104 • CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') CWE-193: Off-by-one Error •