Page 8 of 268 results (0.011 seconds)

CVSS: 5.3EPSS: 0%CPEs: 43EXPL: 0

The function `OCSP_basic_verify` verifies the signer certificate on an OCSP response. In the case where the (non-default) flag OCSP_NOCHECKS is used then the response will be positive (meaning a successful verification) even in the case where the response signing certificate fails to verify. It is anticipated that most users of `OCSP_basic_verify` will not use the OCSP_NOCHECKS flag. In this case the `OCSP_basic_verify` function will return a negative value (indicating a fatal error) in the case of a certificate verification failure. The normal expected return value in this case would be 0. • https://cert-portal.siemens.com/productcert/pdf/ssa-953464.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=2eda98790c5c2741d76d23cc1e74b0dc4f4b391a https://security.netapp.com/advisory/ntap-20220602-0009 https://www.openssl.org/news/secadv/20220503.txt https://access.redhat.com/security/cve/CVE-2022-1343 https://bugzilla.redhat.com/show_bug.cgi?id=2087911 • CWE-295: Improper Certificate Validation •

CVSS: 5.9EPSS: 0%CPEs: 43EXPL: 0

The OpenSSL 3.0 implementation of the RC4-MD5 ciphersuite incorrectly uses the AAD data as the MAC key. This makes the MAC key trivially predictable. An attacker could exploit this issue by performing a man-in-the-middle attack to modify data being sent from one endpoint to an OpenSSL 3.0 recipient such that the modified data would still pass the MAC integrity check. Note that data sent from an OpenSSL 3.0 endpoint to a non-OpenSSL 3.0 endpoint will always be rejected by the recipient and the connection will fail at that point. Many application protocols require data to be sent from the client to the server first. • https://cert-portal.siemens.com/productcert/pdf/ssa-953464.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=7d56a74a96828985db7354a55227a511615f732b https://security.netapp.com/advisory/ntap-20220602-0009 https://www.openssl.org/news/secadv/20220503.txt • CWE-327: Use of a Broken or Risky Cryptographic Algorithm •

CVSS: 10.0EPSS: 12%CPEs: 59EXPL: 5

The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). • https://github.com/alcaparra/CVE-2022-1292 https://github.com/li8u99/CVE-2022-1292 https://github.com/greek0x0/CVE-2022-1292 https://github.com/rama291041610/CVE-2022-1292 https://github.com/und3sc0n0c1d0/CVE-2022-1292 https://cert-portal.siemens.com/productcert/pdf/ssa-953464.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=1ad73b4d27bd8c1b369a3cd453681d3a4f1bb9b2 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=548d3f280a6e737673f5b61fce24bb100108dfeb https://git • CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') •

CVSS: 7.5EPSS: 1%CPEs: 32EXPL: 4

The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. • https://github.com/drago-96/CVE-2022-0778 https://github.com/jkakavas/CVE-2022-0778-POC https://github.com/0xUhaw/CVE-2022-0778 https://github.com/jeongjunsoo/CVE-2022-0778 http://packetstormsecurity.com/files/167344/OpenSSL-1.0.2-1.1.1-3.0-BN_mod_sqrt-Infinite-Loop.html http://seclists.org/fulldisclosure/2022/May/33 http://seclists.org/fulldisclosure/2022/May/35 http://seclists.org/fulldisclosure/2022/May/38 https://cert-portal.siemens.com/productcert/pdf/ssa-712 • CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') •

CVSS: 5.9EPSS: 0%CPEs: 35EXPL: 0

There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. • https://cert-portal.siemens.com/productcert/pdf/ssa-637483.pdf https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=3bf7b73ea7123045b8f972badc67ed6878e6c37f https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=6fc1aaaf303185aa5e483e06bdfae16daa9193a7 https://git.openssl.org/gitweb/?p=openssl.git%3Ba=commitdiff%3Bh=e9e726506cd2a3fd9c0f12daf8cc1fe934c7dddb https://security.gentoo.org/glsa/202210-02 https://security.netapp.com/advisory/ntap-20240621-0006 https://www.debian.org/security/2022/dsa-5103 •