CVE-2018-17962 – QEMU: pcnet: integer overflow leads to buffer overflow
https://notcve.org/view.php?id=CVE-2018-17962
Qemu has a Buffer Overflow in pcnet_receive in hw/net/pcnet.c because an incorrect integer data type is used. Qemu tiene un desbordamiento de búfer en pcnet_receive en hw/net/pcnet.c debido a que se emplea un tipo de datos de enteros incorrecto. An integer overflow issue was found in the AMD PC-Net II NIC emulation in QEMU. It could occur while receiving packets, if the size value was greater than INT_MAX. Such overflow would lead to stack buffer overflow issue. • http://www.openwall.com/lists/oss-security/2018/10/08/1 https://access.redhat.com/errata/RHSA-2019:2892 https://access.redhat.com/security/cve/cve-2018-17962 https://linux.oracle.com/cve/CVE-2018-17962.html https://lists.debian.org/debian-lts-announce/2018/11/msg00038.html https://lists.gnu.org/archive/html/qemu-devel/2018-09/msg03268.html https://usn.ubuntu.com/3826-1 https://www.debian.org/security/2018/dsa-4338 https://www.suse.com/security/cve/CVE-2 • CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer CWE-121: Stack-based Buffer Overflow CWE-190: Integer Overflow or Wraparound •
CVE-2018-8897 – Microsoft Windows - 'POP/MOV SS' Privilege Escalation
https://notcve.org/view.php?id=CVE-2018-8897
A statement in the System Programming Guide of the Intel 64 and IA-32 Architectures Software Developer's Manual (SDM) was mishandled in the development of some or all operating-system kernels, resulting in unexpected behavior for #DB exceptions that are deferred by MOV SS or POP SS, as demonstrated by (for example) privilege escalation in Windows, macOS, some Xen configurations, or FreeBSD, or a Linux kernel crash. The MOV to SS and POP SS instructions inhibit interrupts (including NMIs), data breakpoints, and single step trap exceptions until the instruction boundary following the next instruction (SDM Vol. 3A; section 6.8.3). (The inhibited data breakpoints are those on memory accessed by the MOV to SS or POP to SS instruction itself.) Note that debug exceptions are not inhibited by the interrupt enable (EFLAGS.IF) system flag (SDM Vol. 3A; section 2.3). If the instruction following the MOV to SS or POP to SS instruction is an instruction like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete. • https://www.exploit-db.com/exploits/44697 https://www.exploit-db.com/exploits/45024 https://github.com/can1357/CVE-2018-8897 https://github.com/nmulasmajic/CVE-2018-8897 http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=d8ba61ba58c88d5207c1ba2f7d9a2280e7d03be9 http://openwall.com/lists/oss-security/2018/05/08/1 http://openwall.com/lists/oss-security/2018/05/08/4 http://www.huawei.com/en/psirt/security-advisories/huawei-sa-20190921-01-debug-en http: • CWE-250: Execution with Unnecessary Privileges CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') •
CVE-2018-1041 – JBoss Remoting 6.14.18 - Denial of Service
https://notcve.org/view.php?id=CVE-2018-1041
A vulnerability was found in the way RemoteMessageChannel, introduced in jboss-remoting versions 3.3.10, reads from an empty buffer. An attacker could use this flaw to cause denial of service via high CPU caused by an infinite loop. Se ha encontrado una vulnerabilidad en la forma en la que RemoteMessageChannel, introducido en las versiones 3.3.10 de jboss-remoting, lee desde un búfer vacío. Un atacante podría emplear este error para provocar una denegación de servicio (DoS) mediante un consumo alto de CPU a través de un bucle infinito. A vulnerability was found in the way RemoteMessageChannel, introduced in jboss-remoting versions 3.3.10.Final-redhat-1, reads from an empty buffer. • https://www.exploit-db.com/exploits/44099 http://www.securitytracker.com/id/1040323 https://access.redhat.com/errata/RHSA-2018:0268 https://access.redhat.com/errata/RHSA-2018:0269 https://access.redhat.com/errata/RHSA-2018:0270 https://access.redhat.com/errata/RHSA-2018:0271 https://access.redhat.com/errata/RHSA-2018:0275 https://bugzilla.redhat.com/show_bug.cgi?id=1530457 https://access.redhat.com/security/cve/CVE-2018-1041 • CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') •
CVE-2017-14491 – Dnsmasq < 2.78 - 2-byte Heap Overflow
https://notcve.org/view.php?id=CVE-2017-14491
Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DNS response. Un desbordamiento de búfer basado en memoria dinámica (heap) en dnsmasq en versiones anteriores a la 2.78 permite a los atacantes provocar una denegación de servicio (cierre inesperado) o ejecutar código arbitrario utilizando una respuesta DNS manipulada. A heap buffer overflow was found in dnsmasq in the code responsible for building DNS replies. An attacker could send crafted DNS packets to dnsmasq which would cause it to crash or, potentially, execute arbitrary code. Dnsmasq versions prior to 2.78 suffer from a 2-byte heap-based overflow vulnerability. • https://www.exploit-db.com/exploits/42941 https://github.com/skyformat99/dnsmasq-2.4.1-fix-CVE-2017-14491 http://lists.opensuse.org/opensuse-security-announce/2017-10/msg00003.html http://lists.opensuse.org/opensuse-security-announce/2017-10/msg00004.html http://lists.opensuse.org/opensuse-security-announce/2017-10/msg00005.html http://lists.opensuse.org/opensuse-security-announce/2017-10/msg00006.html http://nvidia.custhelp.com/app/answers/detail/a_id/4560 http://nvidia.custhelp.com/a • CWE-122: Heap-based Buffer Overflow CWE-787: Out-of-bounds Write •
CVE-2017-1000253 – Linux Kernel PIE Stack Buffer Corruption Vulnerability
https://notcve.org/view.php?id=CVE-2017-1000253
Linux distributions that have not patched their long-term kernels with https://git.kernel.org/linus/a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (committed on April 14, 2015). This kernel vulnerability was fixed in April 2015 by commit a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (backported to Linux 3.10.77 in May 2015), but it was not recognized as a security threat. With CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, and a normal top-down address allocation strategy, load_elf_binary() will attempt to map a PIE binary into an address range immediately below mm->mmap_base. Unfortunately, load_elf_ binary() does not take account of the need to allocate sufficient space for the entire binary which means that, while the first PT_LOAD segment is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) end up being mapped above mm->mmap_base into the are that is supposed to be the "gap" between the stack and the binary. Existe una vulnerabilidad en las distribuciones de Linux que no han parcheado sus kernels de largo mantenimiento con https://git.kernel.org/linus/a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (confirmada el 14 de abril de 2015). • https://www.exploit-db.com/exploits/42887 https://github.com/RicterZ/PIE-Stack-Clash-CVE-2017-1000253 https://github.com/sxlmnwb/CVE-2017-1000253 http://www.securityfocus.com/bid/101010 http://www.securitytracker.com/id/1039434 https://access.redhat.com/errata/RHSA-2017:2793 https://access.redhat.com/errata/RHSA-2017:2794 https://access.redhat.com/errata/RHSA-2017:2795 https://access.redhat.com/errata/RHSA-2017:2796 https://access.redhat.com/errata/RHSA-2017:2797 https • CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer •